VISUAL LANGUAGES
AND APPLICATIONS

Kang Zhang

Visual Languages
and Applications

Visual Languages
and Applications

Kang Zhang
The University of Texas at Dallas
USA

@ Springer

Kang Zhang

University of Texas at Dallas
Dept. Computer Science
Richardson TX 750830688
kzhang@utdallas.edu

Visual Languages and Applications by
Kang Zhang

Library of Congress Control Number: 2006939508

ISBN-10: 0-387-20813-4 e-ISBN-1(k 0-387-68257-0
ISBN-13: 978-0-387-29813-9 e-ISBN-13: 978-0-387-68257-0

Printed on acid-free paper.

© 2007 Springer Science+Business Media, LLC

All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York,
NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use
in connection. with any form of information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this pablication of trade names, trademarks, service marks and similar terms, even if they
are not identified as such, is not to be taken as an expression of opinion as to whether or not they are
subject to proprietary rights.

Printed in. the United States of America.
987654321

springer.com

Contents

Preface xi
Foreword xiii
1 Introduction 1
1.1 Visual Languages and Programming 1
1.2 Visual Programming vs. Program Visualization 3
1.3 Organization of the Book 5
1.4 General Readings on Visnal Languages 7
2 The Foundation - Graph Grammars 9
2.1 Introduction 9
2.2 A Case Study i1
2.2.1 Process Flow DIagrarmsccommmimmimsssmsmsssssssissessssses s 11
2.2.2 Graph Rewriting RUIeScoonrivmmminmmmimsrssnsssssissssssssssssssns i 14
2.2.3 A Graph Grammar for Process Flow DIagrams ... eeeersreensrencer 17
2.3 Formal Definitions 20
2.3.1 Preliminaries 20
2.3.2 Reserved Graph Grammar and Its Properties 22
2.4 Graph Parsing 24
2.4.1 A Parsing Algorithm 24
2.4.2 Selection-Free GIammars ... moscsmes sssees ssessesssassessrass sssass ssasses 26
2.,4.3 Parsing Complexityocoomursmmsrconssensnssensessaensossensaonsssssssesnsss 29

2.5 Improvements Over the Layered Graph Grammarcsesscsessene 31

vi Conftenis

2.6 Summary 33
2.7 Related Work 34
3 Spatial Specification 37
3.1 Introduction 37
3.2 The Spatial Graph Grammar Formalism 38
3.3 Spatial Relationships and Representations 39
3.3.1 DATCCHON .ovveeremseseresvensnmnsnssnnssssennsnsnsnnsnsnses 39
3.3.2 DISHANCE ..orervvmemrererenneseremsenenenserans 40
3.3.3 TOPOIOZY vvoucrrvnnesrsrssesvinmsssssmnanssesssssvassassssans s vesssesvansssssnss s esssosvens 40
3.3.4 ALZHIIENL v e 41
3.3.5 BIZE i rinnrinennm s s s s s s e s s s R e 41
3.3.6 Event Driven R ereR e ere R e ea e e eh e e eh e bbb e bR e b Rt 42
3.3.7 Syntax-Directed Computations ... 43
3.4 Formal Definitions 43
3.5 Graph Parsing 46
3.5.1 A Parsing AlZOrithiD......cocemrienerininniminissninossonimsnsessmansnns 46
3.5.2 Object SeqUENCINE ... vreveririerririesessmresissmres s irsessrissessmresseansesseas 47
3.5.3 A Sequencing EXamplecocrimmmrmeni i imesmesiimeniinsenns 52
3.6 Complexity Analysis 54
3.7 Summary 56
3.8 Related Work 56
4 Multimedia Authoring and Presentation 59
4.1 Intreduction 59
4.2 Adaptation to Context Changes 61
4.2.1 The Marking Scheme 61
4.2.2 26 AQADLALION. ..oovriries cornsersrinserentssenentss sountss seinsss seinssmsninssmsnissshents 62
4.2.3 Biyle AdapLalionomm s s s susssssssssmsnsns s 63

Contents vid

4.3 Example 1: Adapting Sizes for PDA Displays 64
4.3.1 Original Web and Resulting PDA Presentations.....msreceres 65
4.3.2 Structural Transformation.. ... we ~O7
4.3.3 Grammatical Specification ... wowmem e messssssssmsens 69

4.4 Example 2: Adapting Presentation Styles 73
4.4.1 A Presentation Style 73
4.4.2 Grammatical Specification 73
4.4.3 Adapting to An Alternative Style 77

4.5 System Architecture and Implementation 78

4.6 Summary 81

4.7 Related Work 83

5 Data Interoperation 87

5.1 Introduction. 87

5.2 A Hierarchical Interoperable Framework 89

5.3 Interoperation at Instance Level 92
5.3.1 Source and Target Documents 94
5.3.2 Specifying Structures and Translation Rules 96
5.3.3 Automatic Validation and Translation 99

5.4 Model and Schema Specifications 100
5.4.1 Identifying Meta Primitives “ 100
5.4.2 Defining a Model 101
5.4.3 Constructing a Schema 102
5.4.4 Drawing an Instance Data 103
5.4.5 Customizing the Host Graph 103
5.4.6 Adapting RUIES . vievisrmnmismmmmssines e sasens snassssasesssussans 104
5.4.7 Drawing an INSTANCE ..o csisrmmssssnses sorsess srssens saassssusasssnssss 105

5.5 Model Management Operators 106
5.5.1 Hierarchical Operations 108
5.5.2 Graphical Representation of Models and Mappings.......c.coee 109
5.5.3 Implementing Operators by Graph Transformation. ... 111
5.5.4 Merge Operator 112

5.5.5 ModelGen Operator 113

viii Contents

5.5.6 Generalization of OPerators ... 115
5.5.7 A Parsing Example ..o anraamnsans e 116
5.6 Summary 117
5.7 Related Work 118
6 Software Architecture Design 121
6.1 Introduction 121
6.2 Designing Architectural Styles 122
6.2.1 Components and Connectors 122
6.2.2 Architectural Styles 123
6.3 Designing an Architecture 126
6.3.1 TOIGALES ..o smnssismsnssmssssismssssisnssssisnsnssssnsnsstensssstsnssssten 126
6.3.2 Designing a Toll-Gate SYSIEIML - courrimmrrrimmersmiontrinnersmssnersmssnirsnses 127
6.4 Verifying UML Class Diagrams 129
6.4.1 Class DIBEIAINSvucrevonnseirssesvesisssenmsessmosseasessaansessssssssasissesn 129
6.4.2 Automatic Verification ... 133
6.5 Visualizing Design Patterns 134
6.6 Transforming Software Architectures 135
6.7 Summary 137
6.8 Related Work 138
7 Web Engineering 143
7.1 Introduction 143
7.2 The Human-Web Interface 145
7.3 Using the HWI Tool 148
7.4 Graphical Programming for Web Design 149

7.4.1 Web Graphs and Design NOUODS co.osvenemniessmmes e smanseran 150

Contents ix
7.4.2 Graph Operations 152
74.3 Web Graph Grammar 153
7.4.4 Information Filtering 154
7.4.5 Supporting Multi-version Web Sites 155
7.5 Web Reuse Through Reverse Engineering 157
7.5.1 Reverse Engineering Approach 157
7.5.2 Web Visualization Algorithm 160
7.5.3 An Example 162
7.6 Summary 164
7.7 Related Work 164
8 Visual Langunage Generation 167
8.1 Introduction 167
8.1.2 Why Automatic Generation?.... 167
8.1.3 A Generic Multi-Level Approach ... 169
8.2 Design Criteria for VPEs 170
8.2.1 Heterogeneous Visual Programming 171
8.2.2 Hierarchical Structure 172
8.3 Design Model 173
8.3.1 The MVC Framework 173
8.3.2 An Ideal Design Model 176
8.3.3 The VisPro Design Model 177
8.4 The VisPre Toolset 179
8.4.1 A Case STUAY ...ccvcvrcrniimsmsismemsmsssensasensssss s ssnsesssnssosssassensasesins 180
8.4.2 Visual Object GEnerator ... smissessisssmisssssisssssmsssssssses 181
8.4.3 Control Specification Generator. ... 184
8.4.4 Rule Specification Generalor ... smsiassisssimssisssissssin 187
8.4.5 Implementation 191
8.5 A Case Study: Generating A Distributed Programming
Envirenment 192
850 PEDS.....ooooinimnrismismimnesmsasmensenssmscsssmssssssassessmsnscsssmnsssasassssassnes 192
8.5.2 Generation of PEDS Using VIsPro....oumommsmsmsimss 195
8.6 Summary 200

x Contents

8.7 Related Work 201
9 Conclusions and Future Perspective 203
9.1 Conclusions 203
9.2 Future Perspective 205
Bibliography 209

Appendix A RGG+: A Generalization to the RGG ...cocvnnnvsrnens 227

A.l Intreduction 237
A.2 Notatiens 228
A.3 The Generalization 229
A.3.1 Definition of a RGG+ and Its Languagecoemoemmmienimisnininses 230
A3.2 Decidability.....coceveeeneomensneerensnseseneneonsnssenensnsesesesnonssesensnsesesensas 231
A4 Graph Parsing 231
A 4.1 A Parsing AlZOTIthI......ocoorvinenimmnesinosiiin s 232
A4.2 Search TOr REJERES .ocrmemnossnsmscnsnsmssnsnnsnsnenssssnsessnsnsessnnnansnss 233
A.5 Parsing Complexities 234
A5.1 Time COMPIEXILY .coumvenirsreriescrenins surness sennsrnnsssssssenssmsnsns snasssssnes 234
AL5.2 Space ComMPIEXitY v v s osmans sronans sronsns sransns snansas snsnsannsnsasan 236
A.5.3 Optimization Considerations ... csssssssnsssensnsssasesses 237
A.6 Summary 239

Index 241

Preface

Visual languages have long been a pursuit of effective communication be-
tween human and machinge. Today, they are successfully employed for
end-user programming, modeling, rapid prototyping, and design activities
by people of many disciplines including architects, artists, children, engi-
neers, and scientists. Furthermore, with rapid advances of the Internet and
Web technology, human-human communication through the Web or elec-
tronic mobile devices is becoming more and more prevalent.

This manuscript provides a comprehensive introduction to diagrammatical
visual programming languages and the technology of antomatic generation
of such languages. It covers a broad range of contents from the underlying
theory of graph grammars to the applications in various domains. The con-
tents were extracted from the papers that my Ph.D, students and I have
published in the last 10 years, and are updated and organized in a coherent
fashion. The manuseript gives an in~depth treatment of all the topic areas.
Pointers to related work and further readings are also facilitated at the end

of every chapter except Chapter 9,

Rather than describing how to program visually, the manuscript discusses
what are visual programming languages, and bow such languages and their
underlying foundations can be usefully applied to other fields in computer
science that need graphs as the primary means of representation.

Assuming the bagic knowledge of computer programming and compiler
construction, the manuscript can be used as a textbook for senior or gradu-
ate computer science classes on visual languages, or a reference book for
programming language classes, practitioners, and researchers in the related
field.

The manuscript cannot be completed without the helps of many people.
First of all, I am very grateful to Shi-Kuo Chang, a pioneer of visual lan-
guages and one of the greatest computer scientists and Chinese novelists,
for writing a foreword for this manuscript. I would like thank my past and
present Ph.D. students who have contributed to its rich contents, particu-
larly Jun Kong, Guanglei Song, Da-Qian Zhang, and Chunying Zhao. My
thanks also go to Maolin Huang (University of Technology, Sydney,

xii Preface

Australia) for allowing me to apply his work to Web visualization and
browsing; and to Xiaoqgin Zeng (Hohai University, China) for his contribu-
tion to the generalization of Reserved Graph Grammars. Publishers of the
original papers inchiding IEEE, Oxford Press, and Springer are acknowl-
edged for their permission to reuse the contents previously published in
their respective journals and conferences. Finelly, I would like to thank
Susan Lagerstrom-Fife and Sharon Palleschi at Springer USA for their as-
sistance in publishing this manuscript in a timely fashion.

Kang Zhang

Department of Computer Science
The University of Texas at Dallas
Richardson, Texas, U.8.A.

Foreword

Visual computing is computing on visual objects. Some visual objects such
as images are inherently visual in the sense that their primary representa-
tion is the visual representation. Some visual objects such as data struc-
tures are derivatively visnal in the sense that their primary representation
is not the visval representation, but can be transformed into a visual repre-
sentation. Images and data structures are the two extremes. Other visual
objects such as maps may fall somewhere in between the two. Visual com-
puting often involves the transformation from one type of visual objects
into another type of visual objects, or into the same type of visual objects,
to accomplish certain objectives such as information reduction, object rec-
ognition and s0 on.

In visual computing it is important to ask the following question: who per-
forms the visual computing? The answer to this question determines the
approach to visnal computing. For instance it is possible that primarily the
computer performs the visual computing and the human merely observes
the resulis. It is also possible that primarily the human performs the visual
computing and the computer plays a supporting role. Often the human and
the computer are both involved as equal pariners in visual computing and
there are visual interactions. Formal or informal visual languages are usy-
ally needed to facilitate such visual interactions. With the advances in bio-
computing it is conceivable that visual computing may involve animals,
robots, cyborgs and other hybrid life forms so that visual languages can be
either natural or artificial. It is clear that visual languages are both vehicles
for communication and also tools for programming.

A visual language is & pictorial representation of conceptual entities and
operations and is essentially a tool through which users compose visual
sentences, Compilers for visual languages must interpret visual sentences
and translate them into a form that leads to the execution of the intended
task. This process is not straightforward. The compiler cannot determine
the meaning of the visual sentence simply by looking at the visual objects.
It must also consider the context of the sentence, how the objects relate to
ong another. Keeping the user intent and the machine's interpretation the
same is one of the most important tasks of a visual language.

xiv Foreword

Diagrammatical visual programming languages are important because
they are based upon relational graphs and capable of specifying complex
relationships preeisely. Kang's book provides a comprehensive introduc-
tion to diagrammatical visual programming languages and the technology
of automatic generation of such languages. It covers a broad range of con-
tents from the underlying theory of graph grammars to the applications in
various domains. As Kang points out himself, this book is not about how
to program visually. Rather, it is about what are visual programming lan-
guages, and how such langnages and their underlying foundations can he
usefully applied to other fields in computer science that need graphs as the
primary means of representation. The hook gives a comprehensive treat-
ment of graph grammars and their various applications. The Reserved
Graph Grammar (RGG) formalism is extended to Spatial Graph Grammar
(SGG), while both being relational grammars, by integrating the spatial
and structural specification mechanisms in a single framework. What is
unique about this book is the extensive discussion of several important ap-
plication areas of visual langvages and graph grammars, including multi-
media anthoring and presentation, data interoperation, software engineer-
ing and web design. Thus the book can be used in a graduate course on

visual programming languages and applications.

I have known Kang for many years, but I only found out he is also an artist
when he asked me to write the foreword for his book and disclosed to me
that the cover design is from one of his paintings. Small wonder Kang is so
persistent in his research on visual languages! His book is an important
contribution to the growing collection of textbooks and monographs on
visual languages.

Shi-Kuo Chang

Department of Computer Science
The University of Pittsburgh
Pittsburgh, USA

Chapter 1 Introduction

1.1 Visual Languages and Programming

Visual communications have existed as long as the history of mankind,
People communicated through symbols and drawings long before spoken
languages have been developed. Carrying specific meanings, or semantics,
those symbols and drawings may be considered visual languages', that
serve effective commmmnication purposes. In a broader sense, visual lan-
guages refer to any kinds non-textual but visible human communication
medias, including art, images, sign languages, maps, and charts, to pame a
few,

Since the invention of digital computers, researchers have been seeking in-
tuitive and effective communication means between human and computers
{Sutherland 1963). The most important communication is for human to in-
struct computers what to do and how to do to complete intended tasks in
the form of “programs™,

“Programs describe the computational steps carried out by computer de-
vices, both physical and conceptual, and are the basis for automatic control
of a wide variety of machines” (Graham 1987). Programming refers to the
activities of constructing programs. Programming languages are the means
by which different types of computations are expressed in the programs.
Visual programs are a type of programs that describe computational steps
in two or more dimensional fashion. This is in contrast to the conventional
programs that are expressed textually and considered one dimensional. By
the above definition, a visual program could be a diagram or any kind of
meaningful, possibly high dimensional, structures.

Visual programming refers to a process in which the user specifies pro-
grams in a two or more dimensional fashion (Burnett 1999). Visual

! Languages are symbol systems, such as the languages of art (Goodman 1968).

2 Chapter | Introduction

programming aims at effectively improving the programming productivity
by applying visual technologies to support program construction,

Visual programming languages (VPLs) are the languages that support vis-
ual programming, or the visual languages that support programming. This
implies that VPLs are a special class of visual languages used for computer
programming. However, the remaining chapters of this book will simply
refer to visual languages, rather than explicitly VPLs, if the programming
context is clear. In many of the application contexts, the term “visual lan-
guage" is more appropriate than the term “visual programming language”.

An important class of visual programming languages is the diagrammatic
one, which is based on object-relationship abstractions (e.g. using nodes
and edges). Frequently used diagrammatic visual languages include Entity-
Relationship database design languages, data-flow programming languages
(e.g. Petri pets), control flow programming languages, state transition
specifications, and so on. Other classes of VPLs inchide form-based lan-
guages, notably spreadsheet style of languages (Bumett and Gotifried
1998}, and iconic languages based on iconic theory (Chang et al. 1987).
This book covers a specific family of diagrammatic visual languages and
their applications.

Rapid advances of the display and interaction technologies bave made vis-
ual programming an effective and attractive compmnication means. VPLs
have been successfully used in several application areas: teaching children
and adults such as KidSim and later Cocoa (Smith et al. 1994), program-
ming assistance such as the dataflow programming language Prograph
(Cox and Pietrzykowski 1985), development of user-interfaces such as
WIPPOG (Bottoni and Levialdi 2005), sketch recognition (Costagliola et
al. 2006; Plimmer et al. 2006), etc. VPLs have also been widely used in the
design and analysis of software systems. Well-known examples of soft-
ware modeling and specification languages include UML - the Unified
Modeling Languages (Booch et al. 1999), automata, Petri nets, etc. In fact,
visual modeling is becoming an increasingly important area of research in
visual languages. Since the late 1990s, there has been a dramatic increase
in the literature in visual modeling languages. For pointers to a compre-
hensive literature coverage of the applications of visual languages, the
reader may refer to Section 1.4,

1.2 Visual Programming vs. Program Visualization 3

1.2 Visual Programming vs. Program Visualization

To explain the visnal programming process supported by a VPL, we use a
high level conceptual model to illustrate the roles of the user, user inter-
face, and visual program. This model also clearly defines the differences
between visual programming and program visualization, which play com-
plementary roles in software development (see Preface in Zhang 2003).

We adapt the model of van Wijk (2006) that was used to identify the major
ingredients, costs and gains in the field of visualization. The adapted
model, illustrated in Fig. 1.1, considers the major ingredients of the user,
user-interface, and program, rather than those of the user, visualization,
and data in the context of visualization.

PV
P l¢ '({/\ I u-({;; M K
¥P \r dK/dt

=4 ®)

Program User interface User

Fig. 1.1, A conceptual model of visual programming and program visualization

The boxes in Fig. 1.1 denote containers, and circles denote processes that
transform inputs into outputs. The user is modeled with his/her knowledge
K about the program to be constructed, or to be understood and analyzed.
The knowledge K is obtained through the user’s cognitive capability C,
particularly the perceptual ability in the context of visual programming and
program visualization. The knowledge also enhances the cognitive capabil-
ity and plays the key role in driving the interactive exploration E through
the user interface.

Through the user interface, the user provides specifications § for the pro-
gram to be developed or the algorithms and their parameters to be applied.
Upon the specification supplied, a visual program ¥ is displayed and ed-
ited as an image /. In the context of program visualization, ¥ represents the
visualization of a program’s properties, such as status, structure, interac-
tion among its components, or output results. Its image [is perceived by
the user, with an increase in knowledge X as a result.

4 Chapter1 Introduction

Program P is what the user is interested. It is to be developed in the case of
visual programming, or comprehended and analyzed in the case of pro-
gram visualization. The program in this conceptual model has a broader
sense than the traditionally understood program as defined by Graham
(1987). P can be any of the following

* A code sequence conforming to a traditional programming language
such as Java,

s A code sequence conforming to a mark-up language such as XML
which may not necessarily carry any computation, or

* A binary code or data structure generated (e.g. by a parser) from a
high-level specification.

As defined in Section 1.1, visual programming (VP) refers to a process in
which the user specifies programs in a two or more dimensional fashion,
ie. in the direction of F to P. Program visualization (PV), on the other
hand, refers to a process in which certain properties of a program are dis-
played in a two or more dimensional fashion according to the user’s selec-
tion of parameters and/or algorithms. The process of PV is clearly in the
direction of P to V. Usually, a VPL or a VP system aims at easing the
process of program specification § through graphical interaction and direct
manipulation with a minimal requirement of the programming knowledge.
The easiness of the specification § for a given program P is measured by
the amount of time T required, represented by dS/dt. While a PV system
aims at maximizing the user's gain in his’her knowledge K about the pro-
gram P under analysis. The measurement of PV’s effectiveness is made
when the vser takes time T to gain additional knowledge K¢T)-K(0) about
the program P, represented by dK/dt.

An ideal visual software engineering system should support round-trip vis-
nal engineering by incorporating both visual progranuming and program
visualization. Consistent graphical formalisms in both VP and PV are de-
sirable in order to maintain the user’s mental map (Misue et al. 1995)
throughout the life-cycle of the development. Program visualization, how-
ever, is a topic beyond the scope of this book, and is usually within the
scope of software visualization (Eades and Zhang 1996; Stasko et al. 1998;
Zhang 2003).

1.3 Organization of the Book 5

1.3 Organization of the Book

This book is not about how to program visually. Rather, it is about what
are visual programming languages, and how such languages and their un-
derlying foundations can be usefully applied to other fields in computer
science that need graphs as the primary means of representation. The re-
maining of the book is organized as the following.

Graph grammars may be used as a natural and powerful syntax-definition
formalism for visual programming languages. Chapter 2 (extended and
updated on Zhang et al. 2001a) presents a context-sensitive graph grammar
formalism called reserved graph grammar (RGG), which can explicitly
and completely describe the syntax of a wide range of diagrams using la-
beled graphs. The parsing algorithm of a reserved graph grammar uses a
marking mechanism to avoid ambiguity during parsing and has polynomial
time complexity in most cases.

Chapter 3 (Kong and Zhang 2004a; Kong and Zhang 2004b) presents an
extension of the RGG formalism, called Spatial Graph Grammar (SGGQ),
by integrating both the spatial and structural specification mechanisms in a
single framework. In addition to nodes and edges, this formalism treats
spatial constraints as a type of language constructs in the abstract syntax.
With the extended expressive power, semantic and structural requirements
can be intuitively specified through spatial notations.

The next four chapters present some typical applications of visual lan-

guages and graph grammars.

The first application is multimedia authoring and presentation. Oup-line
multimedia presentations, such as news, need to be constantly updated.
There are increasing demands for accessing on-line multimedia documents
from mobile devices such as PDAs. A sound but practical formalism is
needed to support auntomatic adaptation to the change of media contents,
display environments, and the user’s inteption. Chapter 4 (Zhang et al.
2005a) presents a visual language approach to the layout adaptation of
multimedia objects, based on the RGG. The chapter focuses on the issues
and techniques for size adaptation and style adaptation in response to the
change of device requirements and user’s interactions.

The next application is data interoperation. As an increasing amount of
scientific and societal data is accessible as in digital forms and possibly
represented in various styles of XML-based languages, there is a need for
seamless and user-friendly tools that could reuse and integrate the hetero-
geneous digital artifacts. Aiming at providing user-friendly means for

6 Chapter I Introduction

exchange of digital artifacts, Chapter 5 (Zhang et al. 2001¢; Song et al.
2004a; Song et al. 2004b; Zhang et al. 2005b) presents a language genera-
tion mechanism that allows graphical data-encoding languages and sche-
mas to be specified and automatically generated. The generated language
environments can automatically verify the syntactical structure of any con-
structed digital artifacts and, when translation specifications are provided,
automatically translate a source artifact expressed in one encoding lan-
guage or schema to its equivalent in another language or schema.

The third application is sofiware engineering. Software architecture and
design are usually modeled and represented by informal diagrams, such as
architecture diagrams and UML diagrams. While these graphical notations
are easy to understand and convenient to use, they are not amendable to
automated verification and transformation. Chapter 6 (Kong et al. 2003;
Kong et al. 2005) applies graph grammars to the specification of software
architectures through UML class diagrams and design patterns. These
grammars enable a high level of abstraction for the general organization of
a class of software architectures, and form a basis for various analysis and
transformations, In this approach, software verification is performed
through a syntax analyzer, Architecture transformation is achieved by ap-
plying predefined transformation rules.

The last application is Web design. The design of Web sites has been
largely ad hoc, with little concern about the effectiveness of navigation and
maintenance. Chapter 7 (Zhang et al. 2002) presents a general framework
with a human-Web interface that supports Web design through visual pro-
gramming and reverse Web engineering through visualization. The chapter
describes the framework in the context of a Web tool, known as HWIT,
which has been developed for a pilot study.,

Chapter 8 (Zhang et al. 2001b) presents the design, construction, and ap-
plication of a generic visnal language generation environment, called Vis-
Pro. The VisPro design model improves the conventional Model-View-
Controller framework in that its functional modules are decoupled to allow
independent development and integration. The VisPro environment con-
sists of a set of visual programming tools. Using VisPro, the process of
VPL construction can be divided into two steps: lexicon definition and
grammar specification. The former step defines visual objects and a visual
editor, and the latter step provides language grammars with graph rewrit-
ing rules. The compiler for the VPL is automatically created according to
the grammar specification. A target VPL is generated as a programming
environment which contains the compiler and the visual editor, The chap-
ter demonstrates how to use VisPro by building a simple visual language

1.4 General Readings on Visual Languages 7

and a more complex visual modeling language for distributed program-
ming,

Finally, Chapter 9 summarizes the challenges faced by visual language re-
searchers and provides a future perspective in addressing the challenging
issues and in other application potentials.

1.4 General Readings on Visual Languages

Representative pioneering work in visual programming and visual lan-
guages includes Chang (1971), Smith (1975), and Pong and Ng (1983).
The milestone work of Sutherland (1963) sets a lasting foundation for
graphical interactions.
There have been several surveys and reviews, mostly in early days of vis-
ual language research, including Shu’s dimensional perspective (1986),
Myers® taxonomy on visual programming, programming by examples, and
program visualization (1990), and Chang’s tutorial and survey (1987).
More recently, Marriott and Meyer (1997) proposed a classification of vis-
nal languages based on grammar hierarchies, and Bottoni and Grau (2004)
presented a family of meta-models, expressed as UML diagrams, for clas-
sifying visual languages.
Readers may find collections of papers in visual language research in aarly
years in Chang at al. (1986), representative papers in visual programming
environments in Glinert (1990a; 1990b), object-oriented visual program-
ming in Burnett et al. (1995), and visual language theory in Marriott
and Mﬁ}fﬁl’ (1998} Bnmatt (2006) maintains a Web page
p:/fweb.er burnett/vpl.html), which is pethaps the
mﬁst cﬁmprehenswe mxi updated collection of references.

There had been an annual conference, the IEEE Symposium on Visual
Languages (VL), that was started as a workshop in 1985 in Hiroshima
University, Japan, and then became the symposium until 2002, Due to the
increasing role of human aspects and cognitive science, the conference title
was changed to the JEEE Symposia on Human-Centric Computing — Lan-
guages and Environments in 2003, organized as three separate symposia.
The title has now been changed to the JEEE Symposium on Visual Lan-
guages and Human-Centric Computing (VL/HCC) since 2004, having re-
alized the loss of the visual language identity. The most recent symposia in
this series can be found at the following URLs:

8 Chapter I Introduction

VLHCC 07, Coeur d’Alene, USA: http://vlhec07. eecs.wsu.edu/
VL/HCC 06, Brighton, UK hitp://www.cmis.brighton ac.uk/vihee/
e VL/HCC’03, Dallas, USA: htip://vis .utdallas.edu/vihee05/
*» VL/HCC'04, Rome, Italy: hitp://vihec04.dsi uniromal .it/index.php
e« HCC'03, Auckland, New Zealand: http://projects.cs.dal.ca/HCC03/

A less formal and smaller annual forum is the Visual Languages and Com-
puting Workshop (VLC), started in 2002, VLC has always been a satellite
workshop at the International Conference on Distributed Multimedia.

The Journal of Visual Languages and Computing, Elsevier (previously
published by Academic Press), is the premier archived journal dedicated to
the publication of research in visual languages and related topics in visual
computing.

Chapter 2 The Foundation - Graph Grammars

2.1 Introduction

In the implementation of textual languages, formal grammars are com-
monly used to facilitate the language understanding and the parser crea-
tion. When implementing a diagrammatic visual programming language
(in the rest of the chapter, diagrammatic visual programming languages
will simply be referred to as visual languages), this is not usually the case.
A visual language requires a formal syntactic definition, which is indispen-
sable for antomatic analysis, transformation, and non-ambiguous expres-
sion. Graph grammars with their well-established theoretical background
may be used as a natural and powerful syntax-definition formalism
(Rozenberg 1997) and the parsing algorithm based on a graph grammar
may be used to check the syntactical correctness and to interpret the lan-
gnage semantics.

One obstacle for the application of graph grammars is that even for the
most restricted classes of graph grammars the membership problem is NP-
hard (Rozenberg and Welzl 1986). Consequently, most of the existing
graph grammar parsing algorithms are either unable to recognize interest-
ing languages of graphs or tend to be inefficient when applied to graphs
with a large number of nodes and edges.

Another problem is that oearly all known graph grammar parsing algo-
rithms (Rozenberg and Welzl 1986; Bunke and Haller 1989; Golin 1991;
Kaul 1982; Wills 1992; Wittenburg 1992) deal only with context-free pro-
ductions. A context-free grammar requires that only a single non-terminal
is allowed on the left-hand side of a production (Wittenburg and Weitzman
1996). A context-sensitive graph grammar, on the other hand, allows left-
hand and right-hand graphs of a production to have arbitrary number of
nodes and edges. Most existing graph grammar formalisms for visual
languages are context-free, Yet not many visual languages can be specified
by purely context-free productions. Additional features are required for

10 Chapter 2 The Foundation - Graph Grammars

context-free graph grammars to handle context-sensitivity, It is therefore
difficult for context-free grammars to specify many types of visual lan-
guages.

Rekers and Schiirr (1997) proposed layered graph grammars (LGGs) for
specifying visual languages. LGGs differ from most other grammars in
two aspects: context-semsitivity and graph formalism. Being context-
sensitive makes the graph grammars expressive. The graph formalism in
LGGs is intuitive and thus easier to understand and to use than textual
formalisms for specifying visual languages. However, although being ex-
pressive, the layered graph grammar is inefficient in its implementation. Its
parsing algorithm is complicated and the parsing complexity generally
reaches exponential time.

This chapter presents a context-sensitive graph grammar called reserved
graph grammar (RGG) (Zhang 1997; Zhang and Zhang 1997), which was
nwitivated by the development of a general-purpose visual language gen-
erator (see Chapter B). Because the targets of the generator are visual lan-
guages, their grammars are better specified using a graph formalism. As a
part of the generator, a visual editor should be used to create visual pro-
grams based on the grammar specifications and parsing algorithms should
be automatically created according to the grammar.

The RGG is developed based on the layered graph grammar by using the
layered formalism to allow the parsing algorithm to determine in finite
steps whether a graph is valid. It uses labeled graphs to support the linking
of newly created graphs into a parsed graph (traditionally called embed-
ding). The node structure enhanced with additional visual notations in the
RGG simplifies the transformation specification and also increases the ex-
pressiveness.

An RGG is complete and explicit in describing the syntax of a wide range
of diagrams. Compared to the LGG where the context-graph (Rekers and
Schiirr 1997} must explicitly appear in the production, the embedding
mechanism in the RGG allows the grammar representation to avoid most
of the context-specifications while being more expressive. This greatly re-
duces the expression complexity, and in turn increases the efficiency of the
parsing algorithm.

A general RGG parsing algorithm, however, has the exponential time
complexity. This is solved by introducing a constraint into the RGG. It is
not yet clear how this constraint limits the application scope, but we find
that even the grammar of a complicated control flow diagram satisfies the
constraint. With thiz constraint, a parsing algorithm of polynomial time

2.2 ACgseStudy 11

complexity can be developed. An algorithm for checking whether an RGG
satisfies the constraint is also developed.

The RGG formalism bas been used in the implementation of a toolset
called VisPro, which facilitates the generation of visual languages using
the lexfyacc approach (Chapter 8; Zhang 1997; Zhang and Zhang 1998b;
Zhang et al. 2001a).

The rest of the chapter is organized as follows: Section 2.2 describes a case
study that demonstrates the basic idea of the RGG. Section 2.3 provides a
formal definition of the RGG formalism. Section 2.4 defines a selection-
free condition which allows an RGG to be parsed in polynomial time. Sec-
tion 2.5 compares the RGG formalism with its predecessor, the LGG, fol-
lowed by the chapter summary in Section 2.6,

2.2 A Case Study

2.2.1 Process Flow Diagrams

We use a process flow diagram (PFD) as an example to illustrate how an
RGG works. A process flow diagram has two types of constructs: struc-
tured and non-structured. For example, a fork-join construct provides a
structure in a diagram, while a send-receive construct does not affect the
structure of a diagram. Many diagrams used in computer science bave such
g mixture of constructs, which are difficult to specify using existing graph
grammars except the layered graph grammar (Rekers and Schiirr 1997).

In the PFD shown in Fig. 2.1, the fork statement splits one thread into mul-
tiple threads (three in the example). There are two send statements that
send different messages to the same receive statement. Assuming syntacti-
cally, a receive statement can receive information from any number of
send statements, while a send statement can send to only one receive. A
Jfork statement can split one thread into any number of threads.

12 Chapter 2 The Foundation - Graph Grammars

Fig. 2.1. A process flow diagram

We first translate the diagram in Fig. 2.1 into a graphical form whose syn-
tax is suitable for the RGG interpretation. We will call such a graphical
form a node-edge diagram. The translation is very straightforward as
shown in Fig. 2.2, ignoring all the arrows since the direction is unimpor-
tant in our graph grammar representation. A node in the node-edge repre-
sentation is a two-level structure. Fig. 2.3 depicts an example node called
Jjoin, The first level is the large surrounding rectangle, which is called a su-
per vertex. The small rectangles embedded in a super vertex are the second
level called vertices. A vertex or super vertex can be connected to one or
more edges. An edge is uniquely determined by two vertices in the in-
volved nodes. RGG does not impose semantic difference between connect-
ing to a vertex and connecting to a super vertex. The translated node-edge
representation of the process flow diagram is shown in Fig, 2.4,

[] M
l_j e

(a) normal representation (b} node-edge representation
(a) usual representation (b) node-edge representation

Fig, 2.2. From a diagram to a node-edge representation

22 A CaseStudy 13

vertex

join ... SHper verex

Fig. 2.3. Node structure

ek

Fig. 2.4. The node-edge form of the process flow diagram

In a node-edge diagram, all vertices should be labeled. For simplicity, we
use T (top), B (bottom), L. (left), R (right) to label the vertices according to
their positions in a node. Vertex labels uniquely identify the vertices in
each node.

14 Chapter 2 The Foundation - Graph Grammars

2.2.2 Graph Rewriting Rules

A graph rewriting rule, also called a production, has two graphs which are
called Jeft graph and right graph. It can be applied to an application graph
(called host graph) in the form of an L-application or R-application. A
production’s L-application to a host graph is to find in the host graph a re-
dex of the left graph of the production and replace the redex with the right
graph of the production. An R-application is a reverse replacement (i.e.
from the right graph 1o the left graph). A redex is a sub-graph in the host
graph which is isomorphic to the right graph in an R-application or to the
left graph in an L-application.

In the case of linear textual languages, it is clear how fo replace a non-
terminal in a sentence by a corresponding sequence of (non-)terminals.
However, with a visual language that has two-dimensional relationships
among the language elements, a far more complicated mechanism is
needed to establish relationships between the substitute of a redex and its
adjacent clements.

There are three approaches to embedding a graph into a host graph (Rekers
and Schiier 1997

o Implicit embedding: formalisms such as picture layout grammars
(Golin 1991) and constraint multiset grammars (Chok and Marriott
1995) do not distinguish between vertices and edges. Relationships
are implicitly defioed as constraints over their attribute values. At-
tribute assignments within productions have the implicit side effect
that creates new relationships to unknown context clements. Users
are, therefore, not always aware of the consequences of attribute as-
signments, and parsers require considerable time to extract, from at-
tributes and constraints, implicitly defined knowledge about the rela-
tionships.

» Embedding rules: some graph grammars such as the NLC graph
grammar (Rozenberg and Welzl 1986) and the DNECL graph gram-
mar (Brandenburg 1988) have separate embedding rules which allow
the redirection of arbitrary sets of relationships from a redex to its
substitute. This approach is easy to implement. However, the em-
bedding rules are often difficult to understand and all known parsing
algorithms for productions with embedding rules are either ineffi-
cient or imposing very strict restrictions on the lefi- and right-hand
sides of the productions, Furthermore, embedding rules are only able
to redirect or re-label existing relationships. They cannot be used to

22ACaseStudy 15

define such productions as the one in Fig, 2.5, which establishes new
relations between previously unconnected vertices,

* Context elements: context elements can be used to establish the rela-
tionships between a newly created graph and the host graph. This
approach is the easiest to understand, but an unrestricted use of con-
text elements may complicate the graph rewriting rules. Further-
more, it is difficult to rewrite elements which may participate in a
statically unknown number of relationships.

LT S|
statement send
[z8] [zE]
l:l:T [L.._J‘*fT
Yreceive Forecoive
53 |
Fig. 2.5. A graph rewriting rule

The reserved graph grammar combines the approaches of the embedding
rule and the context elements to solve the embedding problem. By intro-

ducing context information, simple embedding rles can be sufficiently
expressive to handle complicated programs. Moreover, the wildcards for-
malism used in the LGG is not needed in the RGG. The following para-
graphs explain our new embedding approach by showing its application in
the graph transformation process. In order to identify any graph elements
which should be reserved during the transformation process, we mark each
isomorphic vertex in a production graph by prefixing its label with a
unigue integer. The purpose of marking a vertex is to preserve the confext.

We impose an embedding rule which states that if a vertex in the right
graph of the production is unmarked and has an isomorphic vertex v in the
redex of the host graph, then all edges connected to v should be completely
inside the redex. With the above embedding rule which is usually called
the dangling condition (Rozenberg 1997), each application of a production
can ensure that a graph can be embedded in a host graph without creating
dangling edges. The examples in Fig. 2.6 illustrate the R-application proc-
ess, where some host graphs have isomorphic graphs (enclosed in dashed
boxes) of the right graph of the production in Fig. 2.5, In Fig, 2.6(a)(1), the
isomorphic graph is a redex. The vertices corresponding to the isomorphic
vertices marked in the right graph of the production are painted gray. The

16 Chapter 2 The Foundation - Graph Grammars

transformation deletes the redex while keeping the gray vertices, as shown
in Fig, 2.6(a)(2). Then the left graph of the production is embedded into
the host graph, as shown in Fig. 2.6(a)(3), while treating a marked vertex
in the left graph the same as a gray vertex that has the same mark. We can
see that the marking mechanism allows some edges of a vertex to be re-
served after transformation, For example, in Fig. 2.6(a), two edges from B
to T are reserved after transformation. Note that Fig. 2.6(a)(2) serves only
as an illustration of “reserving”, and is not the result of a transformation.

shiiement

L2 ﬁu li"l;ﬂ y m[ﬁ.‘mw
satemet
= 1 = o tm
e oh ™
L | =201 oot e |
’ [E1 51 X [ﬁf} oz ot E‘{! oot 3
b ©

Fig. 2.6. Examples of the R-application

In the above notion of process flow diagrams, a send node is allowed to
connect to only one receive node. We show how such a restriction can be
expressed and maintained in the RGG. The solution is simple: we leave the
send node unmarked in the production. According to the embedding rule,
the isomorphic graph in Fig. 2.6(b) is not a redex because the super vertex
in the send node has an edge that is not inside the isomorphic graph while
its isomorphic super vertex in the right graph is unmarked. Therefore, the
graph in Fig. 2.6(b) is invalid. On the other hand, we allow a receive node
to receive data from one or more send nodes. To support this, we mark the
super vertex of the receive node in the production in Fig. 2.5. The graph in
Fig. 2.6(c) is valid according to the embedding rule. There is a redex (in
the dotted box) in the graph, becanse the super vertex of receive has its iso-
morphic vertex marked in the right graph of the production, even though it

22ACaseStudy 17

though it has an edge connected outside the isomorphic graph. Therefore,
the marking mechanism helps not only in embedding a graph correctly, but
also in simplifying the grammar definition,

2.2.3 A Graph Grammar for Process Flow Diagrams

The graph grammar shown in Fig. 2.7 explicitly and precisely depicts the
syntax of the PFD language. It consists of a set of productions, and the la-
bel <i> identifies Production i.

The L-application defines the language of a grammar. The language is de-
fined by all possible graphs which have only terminal labels and can be de-
rived using L-applications from an initial graph (i.e. A). The R-application
is used to parse a graph. If the graph is eventally transformed to an initial
graph after a series of R-applications, the graph is proven to belong to the
language. In the sequel, we prove that the R-application can precisely de-
termine the language defined by the L-application for an RGG.

By applying the R-application of the RGG in Fig. 2.7 repeatedly to a spe-
cific diagram (i.e. a host graph), we can determine whether the diagram is
a process flow diagram. The process of parsing the PFD drawn in Fig. 2.1
is illustrated in Fig. 2.8, where a label in an oval describes a possible R-
application order (represented by an alphabetic letter, e.g. ¢ is after a) and
the corresponding production (by a numeric figure). The notation d:2
means that the redex of Production 2 is applied after the R-applications a,
b, and ¢ have been applied. The R-applications may be applied in different
orders but will produce the same result,

In Fig. 8(a), the five sub-graphs in the dotted boxes are possible redexes,
which can be applied with Productions <6>, <6>, <2>, <2>, and <2> to
produce the graph in Fig. 8(b). Similarly, the graph in Fig. 8(b) can be
transformed into the graph in Fig. 8(c), and so on. Finally, the graph is
transformed into an initial graph. The original diagram is, therefore, a valid
process flow diagram.

The following section presents a formal definition of the reserved graph
grammar.

18 Chapter 2 The Foundation - Graph Grammars

< 1% axiom < assignment
wiart
1
Z
LI | BT - []
A] P — ?
I"'B;'E [Z8]
||
end
<3 if structure
/:Z‘] i [E]
- |
Shapanent statenent sutpment
B |

<> Tork structure with more than two forks

s =
|28]

|]
ecabre

Lirl =
atatenient

| | o
fork Tork
-
slasemment = Habement siutomk
! [' l B I | B i
EM 4B
<F> fork stracture with one fork <6 send and receive pair
[1 g
otk
| i | -
yd ErN
L.l...l‘ =
Shapnent = salemenl
[25] [G
7 Saveeive
L] | 5n)
o
[z
<7 receive statement <8 reduction

Fig. 2.7. A reserved graph grammar specifying process flow diagrams

19

2.2 A Case Study

B A

S

y

{e)

Fig. 2.8. Graph transformations (parsing) when productions are applied

)

20 Chapter 2 The Foundation - Graph Grammars

2.3 Formal Definition

2.3.1 Preliminaries

In order to define the reserved graph grammar and its properties, we will
first introduce some basic concepts, such as graph element, graph, and
isomorphism. We then define the marking mechanism, which allows us to
further define a redex and graph transformations including L- and R- ap-
plications,

Definition 2.1 n:=(s, V, [} is a node on a label set L, where
+ Vis a set of verfices,
+ scVis a super verlex, and

* [Vl is an injective mapping from V to L.

A super vertex contains a set of vertices, and itself is a vertex. A label
serves as a type in an RGG. For simplicity, we will use the notations n.V
and n.s to represent the corresponding parts of a node n; and this conven-
tion is applicable to other definitions.

Definition 2.2 Two nodes n1 and n2 are isomorphic, denoted as ny=ny, iff
s they are defined over the same label set, and

o Ff{{f: n. VoV is a bijective mapping) A Yven .V {ny(vi=na.If(v})) A
nz.5=f{ny.s)).

The definition specifies that two nodes are isomorphic if they have the
same types of vertices (including super vertices).

Definition 2.3 G:=(N, E) is a graph over a label set L, where

* N is a finite set of nodes over L,

e EcNVxN.V, where N.V= [Jn.V,is a finite set of edges.

neN

Each edge connects from a vertex of a node to a vertex of another node
and is defined by that pair of vertices.

Not all graphs are meaningful. Only certain types of graphs represent
meaningful visnal sentences. A graph grammar can be used to define those
graphs that are valid visual sentences. To specify the graph grammar we
need to define the following concepts.

2.3 Formal Definition 21

Definition 2.4 A vertex v is said to be marked, denoted as mark{vl=m, if it
is assigned an integer m called mark.

Definition 2.5 G:=(N, E, M) is a marked graph over a label set L, where
s (N, E)is agraphoverL, and

« M V-3l is a bijective mapping, where Vo NV, and | is a set of inte-
gers.

A marked graph has unique integers in some of its vertices. Different ver-

tices in a marked graph should have different marks. We use mark(v)=m to

indicate that v is assigned an integer m, and mark(v)=mull to indicate that v

is assigned nothing and said to be unmarked.

Definition 2.6 Two vertices a and b in two different graphs are equivalent,
denoted as a=b, iff mark{a}=mark(b) and mark{a}nuli.

Definition 2.7 Two graphs Gq and G; are isomorphic, denoted as G«=G;,,
iff 3F.G-+G; is a bijective mapping such that

« ¥neGy.N: n=f{n); and
e Ve=(v, V)eGy.E: fle)=(f(vs), f(w))eC2E.

To apply a production to a graph (called a host graph), we need to find a
sub-graph in the host graph that matches the right graph (or left graph) of
the production. Such a matching sub-graph in the host graph is called a re-
dex.

Definition 2.8 A sub-graph X of a graph H is called a redex of a marked
graph G, denoted as XeRedex(H,G), iff 2f:G—+X is a bijective mapping and
under the mapping:

o X=(3: and

o YveG.V ((mark(v)=null) A ¥ vieH ({(e=(f{v},vi)eH v e={vy, flv)}cH) — e
eX).

This definition specifies that a sub-graph X of a graph H can be a redex of
a marked graph, G, if and only if X is isomorphic to G and every vertex in
X that is isomorphic to an unmarked vertex in G should have edges com-
pletely inside X. The definition of a redex eliminates the possibility of any
dangling edges resulted from a transformation.

A redex is always related to a mapping function and we will not specify
the mapping function if this is clear in the context.

Definition 2.9 A production p:=(L, R} is a pair of marked graphs over the
same label set, where L:=(N,, E;, M) and R:=(Ng, Er, M).

22 Chapter 2 The Foundation - Graph Grammars

A pair of marked graphs in a production has the same mark set. They are
called left graph and right graph respectively.

When a production is applied to a graph, the graph is said to be trans-
Jormed by the application.

Definition 2,10 Let X be a redex of G in H determined by a bijective map-
ping f:G— X, f G and G’ are the left and right graphs in a production, then
the fransformation of H to H' after replacing X in H by G' is defined as fol-
lows:

1. add G'toH,

2. WelB.V if veBG.V such that v=v', replace v' with f(v) (called a re-
served node), then delete v, and

3. delete X from H except the reserved nodes.

The result of H with above operation is H', denoted as H=Tr(H, G, G,
X).The second step ensures that the edges connecting the vertices which
are isomorphic to the marked vertices in G are reserved.

Based on the above definition of transformation, the L-application and R-
application can be defined as follows.

Definition 2.11 An L-application of & production pi=(L, R)toa graph His a
transformation H'=Tr(H, L, R, X), where XecRedex(H, L), denoted as
Hi—*H.

Definition 2.12 An R-application of a production p:=({L, R} to a host graph
H isxa transformation H'=Tr(H, R, L, X), where XeRedex(H, R), denoted as
H->"H".

3.2 Reserved Graph Grammar and Its Properties

We now define the reserved graph grammar and some of its properties.

Definition 2.13 A reserved graph grammar gg is a tuple (A, P, T, N},
where A is an initial graph, P a set of graph grammar productions, T a set
of terminal labels with ;e T (we define all edges to have the same label &),
and N a set of non-terminal labels. For vp:=({L,R)eP and vieTuN:;

1. R is non-empty;

2. L and R are over the same label set TUN;

3. lelywhere Lic{Lg, ..., Lo} is a global layer set and Lo ... L=@; and
4. L<R with respect to the following order of graphs:

2.3 Formal Definition 23

G<G'eIi|G) <|Ghavi<h: |G)=|GY; with |Glkdefined as [{x|x e G A
layer(x)=k}.
The last condition guarantees that a diagram can be parsed in finite steps
with the grammar (Rekers and Schiirr 1997).

For simplicity, given an RGG gg:=(A, P, T, N), we use the notation

XeRedex(H) to denote Fp:=(L.R} €P A 3X:{ X e Redex(H, R} v
XecRedex(H, L)), when this is clear in the context.

We denote the sequence of intermediate derivations H—*"H,, H;—*H,,
v Ho H,, 88 HOH-™ ., %°H,; or simply H—*""*"H,, We use
H"H, to denote H—*"*"H,, where n may be 0 in which case H=H, and
Hi—H. This notation is also applicable to the R-application —»,

Definition 2.14 Let gg:=(A, P, T, N} be an RGG, its language L is defined
by L{gg={G] A — G, where G contains only elements with terminal la-
bels}.

We now prove that the R-application can determine whether a diagram is a
language defined by a reserved graph grammar.

Lemma 2.1 Let gg:=(A, P, T, N) be an RGG. 3X;:H —*'H, = 3Xz:H:—H.
Proof: Let X, be a redex determined by a production p:=(L, R). According
to the definitions of the RGG and the transformation process, if 3X;:H
—>*H,, then H; has a redex X,, which is transformed from X and is de-
termined by R. Hence we have 3X;:H,—**H'. But according to the trans-
formation process, we have H'=H. So 3X,:H,—H.

Lemma 2.2 Let gg:=(A, P, T, N} be an RGG. IX:H->"H, =>3X:H~"H.
Proof: Similar to Lemma 2.1,

Lemma 2.3 Let gg:=(A, P, T, N) be a graph grammar, if A—*G then G —»*
A.

Proof:

AS*G = ALY GGG =2 G - M6,y ..., 5 A (Lemma
2.1)

=3G —»* A,

Bimilarly we have:

Lemma 2.4 Let gg:=(A, P, T, N) be a graph grammar, if G —"A then A »*
G.

24 Chapter 2 The Foundation - Graph Grammars

Theorem 2.1 Gel(gg) iff IR:G—" A, where R is a list of redexes.
Proof: it is straightforward from Lemma 2.3 and Lemma 2.4.

Theorem 2.1 states that R-applications determine exactly the language de-
fined by L-applications. This theorem indicates that if one can find a pars-
ing path (i.e.) which transforms a graph to the initial graph, the graph is
valid. A recursive algorithm is needed for parsing, which is rather ineffi-
cient for parsing a large graph.

2.4 Graph Parsing

Parsing is a process that attempts to reduce a sentence according to a
grammar. A reduction (R-application) is performed when a production is
applied. Parsing a graph may be more complicated than parsing a piece of
text.

2.4.1 A Parsing Algorithm

The process of parsing a graph with a grammar consists of: selecting a
production from the grammar and applying an R-application of the produc-
tion to the graph; this process continues until no productions can be ap-
plied (called a single parsing path). If the graph has been transformed into
the initial graph after R-applications, the graph is valid (i.e. the parsing
succeeds); otherwise, the above process is repeated with different selec-
tions (i.e. different parsing paths). If all the possibilities bave been tried
without success, the graph is invalid.

The first stage of any graph parsing algorithm consists of searching in a
graph to find a redex of any production. When such a redex is found, the
question arises whether the production should be applied or not. The ap-
plication of one production may inhibit the application of another produc-
tion and it subsequently causes the entire parsing process to fail. Therefore,
every production instance represents a choice point in the algorithm.

Carrying out the above parsing process is time-consuming as it needs to at-
tempt the R-applications for all productions. We have developed a simple
parsing algorithm, called selection-free parsing algorithm (SFPA), which
only tries one parsing path, as shown in Fig. 2.9. SFPA is effective for an
RGG only in the case that, when parsing any graph with SFPA, if
one parsing path fails, any other parsing paths will also fail.

2.4 Graph Parsing 25

Parsing{Graph host}{
while(hosti=null){
matched=false;
for all peP

redex=FindRedexForR(host, p);

if{redext=nuli}{
R-application{host,p, redex);
matched=true;

}

}
if(matched==false){
print{"invalid"};
exit(0);
}
}
}

Fig. 2.9, The selection-free parsing algorithm

More formally, only those RGGs with selection-free productions can use
SFPA, where the selection-free property for a production set is defined as
follows.

Definition 2.15 Graph G Is a merger of graph G, and graph G, if
« G and Go are sub-graphs of G,
s vvelG.V:iveGi Vv ve(G,V, and
s YeeG.E ecGrLEvecG.E.

Definition 2.16 Let G, and G; be graphs, merge(G,, G,) is a set of merg-
ers of Gy and G,.

In the following definition, we will use p.R and p.L to represent the right
graph and the left graph of the production p respectively.

Definition 2.17 Let P be a set of productions. P is selection-free, if for any
pieP, p2eP, Ry, Ry, Ly, and L; are graphs isomorphic to pi.R, p2.R, pa.l.
and po.L respectively, and vGemerge{R,, Rz} A RieRedex(GG, p1.R) A
Rz=Redex{G, p..R), we have 3G,, Gup, Gu, Gpa: G=THG, p1.R, p1.L. Ry} A
Ga=Tr(Ga, P2R. p2.L. R} A Go=Tr(G, p2.R, p2.L. Re) AGa=Tr(Gp: P1.R,
pil. R1) AGa~Ga.

The definition specifies that a production set is selection-fiee if a graph
with two redexes corresponding to two productions’ right graphs is applied
by the two productions in different orders, the resulting graphs are the

26 Chapter 2 The Foundation - Graph Grammars

same. According to this definition, an algorithm for checking whether a re-
served graph grammar has a select-free production set can be developed.

To check whether a production set is selection-free, we need to check all
the possible combinations of any two production's right graphs. If one
combination does not satisfy the definition, the production set is not selec-
tion-free. Fig. 2.10 shows examples of the checking process. In Fig
2.10(1), two copies (enclosed in dashed boxes) of the right graph of Pro-
duction 6 are merged. According to the embedding rule, different orders of
the R-applications to the redexes (i.e. the copies) result in the same graph.
Fig. 2.10(2) appears to be merged by the right graphs of Productions 4 and
5, but the embedding rule determines that no redex of Production 5 exists.
So the productions satisfy the selection-free condition.

Sy

I I

M= ;

(LIEL A {

F I T e e 2%
| 7014 ;
i| send receive §, gg
D S o) A
D el el B e e v e T I T, I L, EH

Fig. 2.10. Examples of checking the selection-free condition

The production set of the reserved graph grammar illustrated in Fig. 2.7 is
selection-free under the definition, so we can use SFPA to parse any dia-
grams to check if they are valid process flow diagrams. In the following
subsection, we will prove that a reserved graph grammar with a selection-
free production set can use SFPA to parse diagrams correctly.

2.4.2 Selection-Free Grammars

The selection-free property of an RGG means that for a valid graph, any
selection of an R-application to the graph can lead to a successful parsing.
Obviously, a selection-free RGG can use the selection-free parsing algo-
rithm to parse its languages. The selection-free property of a grammar can
be formally defined as:

2.4 Graph Parsing 27

Definition 2.18 Let gg “(A, P, T, N} be an RGG. If ¥(G—*G—"A), for any
XeRedex(G)), 3G —* G;—* Gu1—"A), then gg is said to be selection-free.

Definition 2.19 Let gg:=(A, P, T, N) be an RGG. If for any G—*A,
xaeaedax{(i} Axkeﬁedax(t&} A (X=Xp)) such that (G - G, =™ Ga) A
H(Gm; Gy G} =Gu~Gyy, then gg is said to be order-free.

The order-free property is similar to the finite Church Rosser property
(Brandenburg 1988) but applicable to context-sensitive graph grammars in
that productions are applied to sub-graphs rather than to single nodes. For
simplicity, if G=G', we will use G instead G' in the sequel. We now show
that if the production set of an RGG is selection-fiee, the RGG is selec-
tion-free.

The following lemma implies that a redex of a graph defined in an order-
free graph grammar can be applied with an R-application and the graph
can be reduced to the initial graph.

Lemma 2.5 Let a graph grammar gg:=(A, P, T, N} be order-free, if G—"A
A3XeRedex(G) then 3:G—*Gi—"Gi—"A.

Proof:

¢ G—*A AdXeRedex(G) =3G—"G,..—™A, where n>0. We have
two cases:

s Case I: Xp=X = IG—"G;—*A.

e Case 2: Xg#X = IG->™G,—*A A IXeRedex(G;) - (Definition
2.19).

+ This process can continue:

o 3G%G "G »*AA IX eRedex(G)

* where m<n.

s As nis finite (the property of the layered definition}), we have
o Ji<n: G*Gia Gy —*A.

Lemma 2.6 presented below implies that a redex can be applied anywhere
in the R-application process.

Lemma 2.6 Let a graph grammar gg:=(A, P, T, N) be order-free and
VGyo*A. If 3X & Redex(Go) A 3G —* Gy Gy then 3Go —*Gy'—>*Gnay.

Proof:
o Gyo*G, %Gy

28 Chapter 2 The Foundation - Graph Grammars

¢ =3Gr>G-XiGr.. G G

¢ 236 =16 Gpe

o =3G, "Gy G,y — (Definition 2.19)

¢ =3G2 Gt "Gy "Gy

LI

o =3G>"G'>Gy—.. >G> Gy

e =3G>*G{'>*Gyu.
Theorem 2.2 If gg:=({A, P, T, N) is order-free, then gg is selection-free.
Proof:

s G->*Gi—*A A XeRedex(G;)

o =3G>*G*G>"Gj—*A - (Lemma 2.5)

o =3G>*Gi—>"Gui—*Gy—*A - (Lemma 2.6)

o 2IG*G*Gy—>*A.

Theorem 2.3 Let gg:=(A,P, T, N}, if P is selection-free, then gg is order-
free and thus selection-free.

Proef:

* Suppose G—*A AX;eRedex(G) A XzeRedex(G), we have Jp,eP
AdpeeP so that Xy~p).R and X»p R,

« Since P is selection-free and (XpuX2)cG, G can be transformed by
applying X, and X; in any order and the resulting graphs are the
same.

¢ The transformation process derives that VG—*A if X;eRedex(G) A
X,eRedex(G) A —~(X=X;) then 3 G =™ G, »* G, A 3G % Gy
_+XZ {}g.

» Hence gg is order-free.

s According to Theorem 2.2, gg is selection-free,

Theorem 2.3 says that if the production set of an RGG is selection-free, the
RGQG is selection-free and can use SFPA to parse its languages.

2.4 Graph Parsing 29

2.4.3 Parsing Complexity

To study the time complexity of SFPA, we construct an algorithm Fin-
dRedexForR(G, p) shown in Fig. 2.11, which is the main part of the
SFPA. To explain the algorithm, we first give some definitions.

Redex FindRedexForR(host,p)
{

nodeSaquence=findNodeSequence(p.R);
aliCandidates=findAliNodeSequences(host, nodeSequence);
for all candidatecaliCandidates

{
redex=match(candidate, host, p));
if(redexi=null)
return redex;
}
return rull;

}

Fig. 2.11, The algorithm FindRedexForR

Definition 2.20 A node sequence of a graph G is an ordered list of ali the
nodes in G.

Definition 2.21 Let L=y, Ny, ..., Nyl and Lo=[ngy, ..., Moyl be ordered
node lists. L, Is isomorphic to L, if m=k A nypeny where ie{1...., m}.

Theorem 2.4 The algorithm FindRedexForR{(G, p) has O(|G|™) time com-
plexity, where m is the maximum number of nodes in any right graph of a
set of productions,

Proof:

The function findNodeSequence(p.R) finds a node sequence of the right
graph of a production p. It lists all the nodes of p.R in a certain order. For
a graph grammar, the number of nodes in the right graph of a production is
given, so the function takes O(1).

The function findAlINodeSequences(host, nodeSequence) collects all
the possible node sequences from the host, each of which is isomorphic to
nodeSequence. For a graph G, the number of all possible node se-
quences, each having m nodes, is k™, where k is the number of nodes in G.
So the time complexity for the function findAlINodeSequences is
O(GM™.

30 Chapter 2 The Foundation - Graph Grammars

The function match checks whether a candidate in the host is a redex of
the production p, if so, the candidate is returned as a redex, otherwise, a
null is returned. The time complexity for the function match(candidate,
host, p} is O(m).

As the number of allCandidates is no more than |G|, the maximum time
taken is O(G™).
Theorem 2.5 The time complexity of SFPA is O(|G|™"), where G is a

graph to be parsed by SFPA and m is the maximum number of nodes of all
the right graphs of productions.

Proef:

Suppose that T(K)=QRCFAAHRC)' A +...+2C)A+A, is a function and
next() is an operation applicable to T(k), where A;, C and k are integers,
and C>0, k20, Ai20, 0<i<k.

Let T(k).next(i) = 2C)(Aq) + (2C)'(AD) + ... +2C)"(A) + 2C)(A+
1) + QO (Ai+C) +..+ CCHAHC) + (A+C) be T(k) after i execu-
tions of next() operation, where A>0, C>0, k20, we have

T(k).next(i) = 2C)Ag + QC)'A; +..+ 2O ™Ay + QO)MA; + QO
"Mt ot Ay - (QOF - RO)IC -...- (20)C-C) = T(K) - (¥ 25k
200

As (2FICHLHCH. | 22Oy (2FICHRICR. | kL) = Rk
L.2-1)=CH >0,

We have T(k)>T(k).next(i). (D

This means Jn:n<T(k) such that T(k) will be zero after n executions of its
"next" operation.

Let ggi=(A, P, T, N} be a reserved graph grammar and G—*A,

A graph G can be mapped to T(K)=(2C)*Aq+2C)* Ar+.. H2C) Ay +Ay,
where A={G);, k equals to the maximum number of layers, and C is the
maximum number of nodes of all the right graphs of productions. We de-
note G.T(k) as the T(k) that is mapped from G.

Suppose G—*G'. According to the definition of the grammar layer and the
transformation rules, we have G<G', where 3i:|G|; <|G'nVj<i: |G|=GT;
with |Gl defined as [{xjxeG layer(x)=k}|

This means that in the layer i, the element number of (' is less than the ele-

ment number of G by [G]-}G'; elements. In a layer larger than i, the num-
ber of additional elements are no more than C. So after the transformation,

2.5 Improvements over the Layered Graph Grammar 31

G.T() <CYAl) + QOMAY) + ... +2C™(An) + RO (A(G)-
IG) + 2C) ' (AurtC) +..+ 2CHA#C) + (Ar+C) € G.T(K).next(i). So
we have 3G . T(k) G.T(k).next(i).

For any graph G, G.T(k)=0, so according to (1), G—*A must finish within
G.T(k) steps.

As G.TR=C2O AHQROM A +.. +2C) A Ak <
QCOMAGHA .. FAY=(2C)G], according to Theorem 2.4, the time com-
plexity of the algorithm SFPA is (2C)NG*O(G™=0(G™").

We now discuss the space complexity of SFPA. We implement an index
for each element of a graph. The indices are organized as follows: they are
listed in the same array if they refer to the graph elements that have the
same label. Thus, a graph is a set of arrays, each of which is a list of ele-
ments with the same label. A nodeSequence (in Fig. 2.11) can be im-
plemented as a set of pointers, each pointing to an element of an array. The
next node sequence can be found by moving peinters in a proper way, and
a candidate of a redex is the pointer set. In this case, the extra space is un-
necessary except for the pointers. Thus, SFPA has a linear space complex-
ity.

2.5 Improvements over the Layered Graph Grammar

Fig. 2.13(a) and (b) show two productions of the layered graph grammar
for parsing the fork statement, where the elements B? and T? (wildcards)
are used as the context elements. For instance, B? means begin, fork, or If,
as shown in Fig. 2.13(c). After a transformation, say R-application, the re-
lationships between the new node Stat and the host graph are determined
by the B? and T7?, which are part of the host graph. New nodes can be em-
bedded into the host graph when they are linked with the matching nodes
labeled with B? and T?. Without the wildcards, the number of productions
required will be multiplied (Rekers and Schiirr 1997).

The productions in Fig. 2.13(a) and (b} lead to ambiguity. For example, if
a graph has a redex of the right graph in the production in Fig. 2.13(a), it
also has a redex of the right graph in Fig. 2.13(b) because the right graph
in Fig. 2.13(a) is a part of the right graph in Fig. 2.13(b}). Applications of
the productions in LGGs with different redexes may produce different re-
sults. A complex algorithm is then needed to ensure that all possible appli-
cations of productions are attempted.

32 Chapter 2 The Foundation - Graph Grammars

iy T N
Fork
TANAETI AN ED
(b}
B7€ [begin, fork, if}

T?E {end, assign, fork, join, send, receive, if}
s?e{n, £t}
(c)

Fig. 2.13. Productions in a LGG with different embedding mechanisms

A reserved graph grammar can avoid the ambiguity. As a result, its parsing
glgorithm can be simple and efficient. Therefore, compared with the lay-
ered graph grammar (Rekers and Schiirr 1997), the reserved graph gram-
mar has the following three major improvements:

s it avoids the use of wildcards,
» it simplifies the specification through an embedding rule, and

s parsing an unambiguous reserved graph grammar can be done in
polynomial time,

As discussed earlier, the Reserved Graph Grammars (RGGs) are based on
LGGs, and improve over LGGs. Apart from the improvements discussed
above, the major differences between the RGG formalism and the LGG
formalism are that the former can be implemented more efficiently using
the presented parsing algorithm; and that it uses simple embedding rules
rather than context elements (as used in the latter) so that grarnmar specifi-
cations are simplified. The following table compares all the discussed
grammars with RGGs.

2.6 Summary 33

Gram- Left- Right- Con- | Em~ | Additionsl restrie- | Com-

mar bhand hand side | text | bed- | tions plex-
side ding ity

rules

Relational | non- relational | no yes explicit vertex order | expo-
terminal | structure nential

INS-RG non- refational | no yes bounded degree; no exXpo-
terminal | structure non-terminal nential

neight

Boundary | non- graph no yes bounded degree; no expo-

NLC terminal non-terminal nential

Graph neighbors

Constraint | non- multiset | yes | im- | deterministic poly-

Mudtiset terminal phicit nomial

Picture non- Max two | 1 ter- | im- finite set of atiribute | poly-

Lavour terminal | (non-} ter- | minal | plicit | values nomial

minals

Layered graph graph graph | no layering €Xpo~

Graph nential

Reserved | graph graph graph | yes selection-free poly-

GG nogmial

The six attributes used to distinguish various grammars in the table are
proposed by Rekers and Schiirr (1997). They serve a useful purpose in
comparing these grammars. Minas (1998) has adapted RGGs to the
DiaGen hypergraph environment (Minas and Vichstaedt 1995). The selec-
tion-free constraint imposed in RGGs is relaxed to allow more types of
hypergraphs to be specified. However, additional information has to be
provided in the form of negative application conditions (NACs). A produc-
tion with a matching left hand side is not applicable if one of its NACs is
satisfied. The addition of NACs modifies the original grammar and it is
unclear how additional complexity is introduced into the parsing process.

2.6 Summary

This chapter has presented the reserved graph grammar (RGG), which can
be used to specify grammars of diagrammatic visual languages. An RGG
is a collection of graph rewriting rules represented labeled graphs. It
is context-sensitive and its right- and lefi-graphs can have an arbitrary

34 Chapter 2 The Foundation - Graph Grammars

number of nodes and edges, The grammar uses an enhanced node structure
with a marking mechanism in its graph representation. It is this structure
that makes an RGG effective in specifying a wide range of visual lan-
guages and efficient in parsing a certain class of visual languages. Al-
though the time complexity of the parsing algorithm for a general RGG is
exponential, parsing a selection-free reserved graph grammar can be done
in polynomial time. The chapter has presented such a polynomial time
parsing algorithm and proved its time and space complexities. To ensure a
reserved graph grammar to be unambiguous, we also presented a checking
criterion and proved its correctness.

There have been some applications of RGGs, for example, for generating a
visual language for modeling distributed systems (Zhang and Zhang
1998a), and those to be described in Chapters 4 through 7. A wide range of
applications, such as interpreting hand-written mathematical notations
{Blostein and Grbavec 1997), have been reported for using layered graph
grammars (Blostein and Schiirr 1998), upon which RGGs improve.

7 Related Work

Growing interest in visual languages has motivated research in the specifi-
cation and parsing of multi-dimensional structures. Several specification
methods have been proposed and proven to be useful in practical applica-
tions. Examples include Web and Array Grammars (Rosenfeld 1976), Po-
sitional Grammars (Costaglioga et al. 1993), Relational Grammars (Wit-
tenburg 1992; Ferrueci et al. 1994), Unification Grammars (Wittenburg et
al. 1991), Attributed Multiset Grammars (Golin 1991), Constraint Multiset
Grammars (Marriott 1994), Layered Graph Grammars (Rekers and Schiirr
1997}, and Attributed Graph Grammars (Ermel et al. 1999). In this section,
we discuss some of the related grammars and compare them with Reserved
Graph Grammars,

The relational grammars of Wittenburg (1992) are restricted to relational
structures, where relationships of the same type define partial orders. Fer-
rucci et al. (1994) proposed INS-RG grammars, that are adapted from the
Boundary NLC graph grammars of Rozenberg and Welzl (1986). The
right-hand sides of productions in a INS-RG grammar may not contain
non-terminals as neighbors in order to guarantee local confluence. Parsing
can be done in polynomial time if the generated graphs are all connected
and the maximum pumber of edges at any single vertex is known in

7 Related Work 35

advance, This latter restriction also applies to Brandenburg's DNELC
graph grammar (1988).

Marriott's constraint multiset grammars (1994) provide context glements.
Introducing "not exits" constraints prevent any possible overlap between
the right-hand sides of productions, but also make syntax specifications de-
terministic. Golin's (1991) picture layout grammars allow productions with
one pon-terminal on the left-hand side and at most two terminals or non-
terminals on the right-hand side.

Rekers and Schirr (1997) gave an excellent introduction to context-
sensitive graph grammars, They argued that it was difficalt for the afore-
mentioned grammars to generate abstract syntax graphs for connected ER
diagrams. They proposed a context-sensitive grammar formalism, known
as layered graph grammars (LGGs) (Rekers and Schiirr 1997), which can
specify a wide range of visual languages. The graphical specifications of
Lﬁﬁsmmﬂmmnnﬁveandeamﬁrmundmmmanmlgrmm

Bottoni et al. (2000) improved the parsing efficiency of the LGG style of
graph grammars by detecting conflicts through critical pair analysis.

Attributed Graph Grammars (Ermel et al. 1999) integrate graph transfor-
mation rules with Java expressions. The AGG language implements the
single pushout algebraic approach (Ehrig et al. 1997) for graph transforma-
tion, that differs from the algorithmic approach in LGGs. It combines at-
tributed graph transformation with negative application conditions to allow
users to precisely specify a sub-graph that must not be present in order to
perform a graph transformation (Habel et al. 1996; Ermel et al. 1999).

Motivated by applications such as modeling and refactoring for object-
oriented programming, Drewes et al. (2006) recently proposed adaptive
star grammars, which use the meta-model concept to allow multiple nodes
to be copied arbitrarily often. The membership problem for a certain sub-
class of such grammars is shown to be decidable. A parser for adaptive star
grammars has also been proposed (Minas 2006), though not implemented
at the time of writing this book. Minas (2006) speculates that the parser
would show exponential behavior but may in practical applications require
polynomial time similar to the parser for hyperedge replacement grammars
in DiaGen (Minas 2002).

Chapter 3 Spatial Specification

3.1 Introduction

Rather than expressing senfences in sequences of characters, visnal pro-
gramming languages allow programs to be expressed in visual sentences in
a multi-dimensional fashion. As noted by Reker and Schiirr (1996), the
physical layout and the meaning of a diagram are two important aspects of
a visual sentence, A spatial relations graph (SR(G) specifies spatial rela-
tionships between pictorial objects while an abstract syntax graph (ASG}
provides structural information in a succinet form. Consequently in their
approach, a visual sentence is specified through two intermediate graphs.
One is geared toward visualization, and the other toward interpretation
(Reker and Schiiry 1996).

Some researchers specify the interdependency between the concrete syntax
and the abstract syntax using graph grammars, For example, a grammatical
approach is proposed to maintain a correspondence between the abstract
and spatial aspects of VPLs (Reker and Schiirr 1996). Aiming at syntax di-
rected layouts, Brandenburg (1995) proposes the layout graph grammar,
which directly draws a grammatical rule on a plane and determines its spa-
tial configuration according to positions of objects in the plane.

Those approaches explore spatial relationships from the layout perspective
without direct contribution to the interpretation of a graph. Due to the vis-
ual nature of VPLs, we believe that the spatial information should not only
contribute to the representation, but also directly represent structural and
semantic requirements over involved objects. For example, a spatial con-
figuration can visually and explicitly hold the information defining an or-
der over a collection of objects (e.g. the left one has a smaller index than
the right one). By extending the context-sensitive graph grammar formal-
ism the Reserved Graph Grammar (RGG) presented in Chapter 2 (Zhang
and Zhang 1997), a Spatial Graph Grammar (SGG) (Kong et al. 2006) in-
troduces spatial relationships into the abstract syntax, and integrates both

38 Chapter 3 Spatial Specification

the spatial and structural specification mechanisms into a single frame-
work. In other words, in addition to defining connectivity among nodes,
the formalism is able to specify semantic and structural requirements with
spatial information.

This chapter presents a spatial graph grammar (SGG), which introduces
spatial constraints to the abstract syntax. In other words, both the connec-
tivity and spatial relationships construct the pre-condition of a graph trans-
formation. With the extended expressive power, the SGG is capable of in-
tuitively and visually specifying semantic and structural requircments
through spatial information rather than through attributes. The SGG is fun-
damentally different from other graph grammar formalisms by introducing
spatial information into the abstract syntax, and can find many applica-
tions, such as adaptive layout of multimedia documents to be presented in
Chapter 4,

The SGG is enhanced from the Reserved Graph Grammar (RGG) (Zhang
and Zhang 1997) presented in the previous chapter, with a spatial exten-
sion. In particular, spatial relationships are intuitively specified without
sacrificing the expressiveness of structural specifications. In summary,
tightly integrating spatial and abstract specifications, the SGG can bring
the following benefits:

» Correlating spatial configurations with abstract structures, the SGG
can generate a syntax-directed layout, and perform an adaptive pres-
entation based on the existing layout;

¢ The SGG can naturally specify semantic and structoral requirements
through spatial relationships rather than through attributes or edges;
and

e With the help of spatial specifications, the parser of the SGG per-

forms in polynomial time with an improved parsing complexity over
its non-spatial predecessor, i.e. the Reserved Graph Grammar,

3.2 The Spatial Graph Grammar Formalism

This section introduces the spatial graph grammar formalism within a ge-
neric visual environment supporting spatial programming.

Being inherent in the multiple-dimensional fashion, the SGG incorporates
spatial notions into the abstract syntax with nodes and edges. In general,
the description of a scene of objects in space involves spatial aspects that

3.3 Spatial Relationships and Representations 39

have an expression both in terms of inherent characteristics of each object
and in the context of other objects. The size and shape of an object illus-
trate its internal properties while spatial relations express configorations
among distinct spatial objects. Based on several well-established models
{Clementini et al. 1993; Frank 1996; Heméandez et al. 1995), the 8GG sup-
ports spatial relations in four aspects, i.e. topology, direction, distance and
alignment, Developers can customize the granularity of spatial relation-
ships upon the application domain, and design a set of graphical notations
to visually denote spatial relationships.

3.3 Spatial Relationships and Representations

When considering adding spatial notations to the RGG formalism, we gen-
erally aim at

+ Retaining the original RGG syntax and semantics, and
¢ Introducing minimal additional notations that are intuitive for spatial
specifications,

We propose five categories of spatial relationships between any two given
objects: direction, distance, topology, alignment, and size. When used to
specify desired layout re-arrangement, the relationships can be used to
specify changes to be applied during graph transformation. The spatial re-
lationships are currently restricted in a two-dimensional multimedia design
space. It is entirely feasible that such relationships and notations can be ex-
tended to a three-dimensional space for specifying a virtual reality envi-
ronment.

All the spatial relationships are defined between two objects, one referred
to as the primary object and the other as the reference object. When dis-
cussed in the context of a spatial grammar, media objects are represented
and referred to as nodes in grammar productions as termed in Chapter 2.

3.3.1 Direction

To represent the relative direction between two nodes, each node is ar-
ranged as a 3x3 grid in dotted lines inside the node, as shown in Fig. 3.1.
The central region (marked by C) represents the node itself. Surrounding
the central region, the eight grid regions represent eight directions: N
(North), NE (Northeast), E (East), SE (Southeast), S (South), SW (South-
west), W (West), NW (Northwest), in clockwise order. Each of these

40 Chapter 3 Spatial Specification

directions indicates the relative position of the reference object connected
to the current object (primary object). The boundary of the area occupied
by the reference object is outlined by dotted lines surrounding the primary
object.

NW N NE

u
W_W_‘c Ell ok

e e e e [E———

Fig. 3.1. Notation for direction relationships

Each of the eight direction regions may include more than one vertex. The
objects that are connected to a primary object through the vertices of the
same region are in the same direction. For instance, the East region of the
node in Fig. 3.1 has two vertices, E1 and E2, if there are two nodes con-
nected to E1 and E2 from the right side of the present node.

3.3.2 Distance

The distance between two objects’ centers measuores an important class of
spatial relationships. To specify the distance relationship, we prefix a “+”
to the vertex label to indicate a long (or increased) distance to the object
that the vertex connects to, “-” to indicate a short (decreased) distance, and
blank to represent a distance not emphasized (or not changed). Four spe-
cial cases of distances are treated separately as topological relationships
due to their importance in spatial reasoning.

3.3.3 Topology

We can generally define four topological relationships between two nodes:
non-overlapping, overlapping, touching, and containing. Assume that D, is

3.3 Spatial Relationships and Representations 41

the set of all the points on an object x, and B, (< D,) is the boundary point
set of x. Considering a primary object « and a reference object b and D, »
Dy, = R, four topological relationships are defined as the following:

e g is non-overlgpping with b iff R= &,
s gis overlapping with b iff B# @, and further
o aistouching with b iff R (B, 1 By); o1
o a is containing b it Dy <D,
Using a rectangle to represent an object, Fig. 3.2 shows the four types of
topological relationships. Non-overlapping indicates that there is no com-
mon point on both involved objects. Overlapping means that there are
common points between the two objects, It is represented by dotted lines
on the boundary of the overlapped area. We define fouching and contain-
ing as two special cases of overlapping. If common points only exist on the
boundaries of two objects, the objects are fouching with each other, The
touched part is represented by a dotted line. Containing means that all the
points on one object belong te the other, In Fig, 3.2, the boundary of an ob-
ject is totally dotted, indicating that the object is contained in the other ob-
ject.

3.3.4 Alignment

Two objects may be aligned vertically or horizontally, along the directions
of N, 8, W or E. In horizontal direction, we define three different horizon-
tal alignment cases for each object, i.e. top alignment, bottom alignment
and center alignment, giving a total of 9 different alignment relationships
between any two objects. The alignment relationships in vertical direction
are similarly defined. The boundary of a node is divided into 12 segments
according to the 3x3 grid. A bold segment is used to indicate the alignment
relationship. Fig. 3.3 illustrates three most common alignment relation-
ships.

3.3.5 Size

For example, transforming a multimedia document from a desktop Web
page to a PDA display may involve size changes of various media objects.
To represent the changes, we mark the node’s center box with a *+” to in-
dicate that the object is large in size (or zoomed in to become larger), “-*
to indicate small in size {or zoomed out to become smaller), and blank to
indicate a size not emphasized (or unchanged).

42 Chapter 3 Spatial Specification

(=) Notation {b) Miustration

{a} Notation (b) Mustration

Non-overlappiog

Touching
Fig, 3.3. Alignment relations in
horizontal direction
Coptaining
Flg. 3.2. Topological relations
3.3.6 Event Driven

As discussed above, the spatial relationships can be used to specify static
layout structure or some predetermined structural changes. Similarly, the
SWITCH construzct in SMIL (W3C 2001) allows different layouts to be
applied upon different pre-determined conditions, which are defined
through text attributes. Many media players, however, do not provide suf-
ficient support for the specification and run-time evaluation of application-
dependent test atiributes. On the other hand, the grammatical approach al-
lows great flexibility to associate domain-specific triggering conditions
with productions without relying on the media player’s capability. There
are increasing demands for providing users a sense of focusing, realized by
interactively changing the details of certain parts of a multimedia docu-
ment during viewing. Such a mechanism is called interactive semantic
zooming (Marriott et al. 2002).

To address the dynamic issues, we classify graph productions into condi-
tional and unconditional ones. A transformation is performed on an uncon-
ditional production when a redex is found in the host graph that matches
the right graph of the production. A conditional production can only be
triggered by a specific event, such as the change of the device capability,
the user’s interaction ete. Since graph transformations can be per-
formed according to dynamic events, such as user inputs, the appearance

3.4 Formal Definitions 43

of a multimedia document may be adjusted by triggering such conditional
productions when the layout structure, user interaction method, and display
environment need to be changed. More flexible than SMIL SWITCH, con-
ditional productions are able to handle user interactions, and individually
produge local effects,

3.3.7 Syntax-Directed Computations

As described in Chapter 2, the RGG supports syntax-directed computa-
tions by associating data and operators to nodes in productions in terms of
attributes and actions. Inherited from the RGG, in SGGs, attributes can
supplement graphical and qualitative specifications by providing precise
quantitative values. For example, to shorten the distance between two con-
nected nodes by half, we can attach the following action code to the corre-
sponding production:
Action{AAMGraph g) {
int OriginalDistance = Q.left — P.right;
P.right = P.right + OriginalDistance/4;
Qlleft = QLleft - OriginalDistance/4;
}
In summary, a visual representation defines an approximation of layout
while attributes and action codes supplement qualitative specifications
with precise quantitative information and associated computation.

3.4 Formal Definitions

Entities of real worlds are represented by nodes, which are organized in a
two-level hierarchy in the same fashion as the RGG presented in Chapter
2. In a node, each vertex is uniquely identified, and serves as a connecting
point of an edge representing a logical connection. The type of an edge is
implicitly determined by the labels of the vertices that connect the edge
(annotations illustrating types of edges can be attached to the edges though
it is not necessary). For example, a node labeled If as illustrated in Fig. 3.4
containg three vertices over the vertex label set Oy = {T, L, R},

Fig. 3.4. A SGG node

44 Chapter 3 Spatial Specification

Defimtmn 3.1 GWen a vertex label set ﬂuhﬁ node is a tuple N = V", /N,
name', wham VN is a set of vertices, /' : V'— Qy is the labeling funcﬂnn,
and name is a node label determining the type of node N. Moreover, ¥ v,
eV, Iv= Mve) = vi= v

Functions can be combined using the composition operation denoted by
0”. For f:R—8 and g:5—T, g o fis the function with domain R and codo-
main T such that for all xeR, go fix) = g(fix}).

Daﬂniﬁm 3.2: Over two nodes N and N, the structural isomorphism g
VMWW is a bijective function, which preserves the labels of vertices, i.e.
satisfying Mo g = . Two nodes are :samamm% denoted as N=N', iff they
have structural isomorphism, and name™=name".

This definition determines that two nodes are isomorphic if they have the
same types of vertices,

Definition 3.3: Over a set of objects O, a spafial signature is a function f:
O x O — SR, where SR is the set of spatial relationships. f maps a pair of
nodes to the spatial relationship between them.

Definition 3.4: A graph is a tuple G:= NS ES, V@ %, %, m®, g%, where
N€is the sat c;f n&das, E®is the set of edges, Veis tha set of vertices con-
structing N®, s%:E®—V© and t%:E ~—NG are two functions that preserve the
two connecﬁng points of an ed dge, m® VeN® is a function that maps a
vertex to its associated node, g~ is the spatial signature.

Because of the multi-dimensional nature, the embedding problem in visual
programming languages, i.e. establishing connections between the sur-
rounding of a replaced sub-graph and a new sub-graph, does not exist in
textual languages. The marking technique (Zhang et al. 2001a} developed
in the RGG (see Chapter 2) addresses the embedding issue. A marked ver-
tex is assigned by a unique integer, and preserves its associated edges con-
necting from the replaced sub-graph to the outside,

Definition 3.5: mark: V — | is a partial function, where V is a set of verti-
ces, and | is a set of integers. A vertex v is marked iff mark(v}|. Moreover,
within a graph G, for vvy,v, & V, mark(vi)= mark(v,) implies vy=vs.

1a partial function on a set ¥ is simply a function whose domain is a subset of . If fis a
partial function on ¥ and ve ¥, then we write f{vj| and say that ffv} is defined to indicate
that v is in the domain of £ if v is not in the domain of £, we write) 1 and say that fiv) is
undefined.

3.4 Formal Definitions 45

Definition 3.6: Two verlices a and b in two different graphs are equivalent,
denoted as a=b, iff mark{a) = mark{b) and mark(a){.

Definition 3.7: A marked graph is a tuple G:= (N®, E®, V®, 5% ¢, m®, ¢,
mark®, the first seven elements are the same as those in Definition 4, and
mark® is a marking function.

Having introduced the basic concepts, this section defines the potion of
comparisons between graphs,

Definition 3.8: A graph morphism f. G—G’ defines a pair of functions «":
N® — N, £ E® — E%, where f and £ are bijective functions, and pre-
serve the structural specifications, i.e. satisfying o m® 08 =m° 05%0
£,5°=s% 1 mfos®=m% s fom®ot®=m%0t®of, ®=t%
F,m o t®=m% % .

Definition 3.9: Over a marked graph G and a graph G, a spatial mor-
phism f: N°~N€ is a function that preserves the spatial relationships, i.e.
satisfying Vn,, np eN®: Ry(f(ny), f(n2))—Ry(ny,nz), where R, and R; are boo-
lean_expressions for verifying the spatial relationships ri=g°(n,nz) and
r=g° (fin1).f(n2)) correspondingly, g® and g% are the spatial signatures of G
and G’ respectively.

A spatial morphism identifies that a spatial signature can be derived from
the spatial relationships of two involved graphs. In the following, we will
simply say that the two graphs share a spatial signature.

To apply a grammar rule to a given graph (called a host graph), we need to
find a sub-graph in the host graph that matches the right graph (or left
graph) of the rule. The matched sub-graph is called a redex.

Definition 3.10: A sub-graph X of a graph H is called a redex of a marked
graph G, denoted as X<Redex(H, G), iff

1. f= & N° = N*, % E® — ES is a graph morphism between G
and X;

2. " also serves as a spatial morphism between G and X:

3. VecE", @neN® veV® m"(se)) =M n) rse) = v AamE(v)=n A
mark®(v)}) = 3 ceN®, dev‘s (m(t"e)) = (c) ate) = d A mS(d) =
ck or

v ecE", (@neN®, veV® (m" t“(eg} = Atie)=vam®Vv)=na
mark®(v)1) = 3 ceN®, deV® (m"(s"(e)) = '(c) A s"(e) = d A m%(d)
=c); and

4. ¥ nq ngeNC, (ng) = Mng) = ne=na.

46 Chapter3 Spatial Specification

This definition specifies that a sub-graph X of a graph H can be a redex of
a marked graph G if and only if X is isomorphic to (7 in stracture, and they
share a spatial signature,

The SGG is equipped with a parser that verifies the membership of a visual
sentence. By taking the spatial information, the parsing algorithm performs
in polynomial time with an improved parsing complexity over its non-
spatial predecessor, i.e. the Reserved Graph Grammar.

3.5 Graph Parsing

Having defined the context-sensitive spatial graph grammar formalism,
this section presents a parsing algorithm that uses spatial specifications to
reduce searching space, and analyzes the time complexity.

3.5.1 A Parsing Algorithm

The parsing process is a sequence of R-applications, which is modeled as
recognize-select-execute (Bardohl et al. 1999). Parsing a spatial graph
grammar proceeds as follows:

1. Search for a redex of the right graph in the host graph without con-
sidering spatial information;

2. Derive spatial relationships between objects in the redex according
to the physical drawing of the bost graph. Compare the spatial rela-
tionships with the spatial signature of the right graph (RHS) of each
production;

3. If the redex bolds the same spatial signature as the RHS, embed a
copy of the left graph into the host graph by replacing the redex.
Otherwise, go to Step 1 to search for a new redex.

One or more occurrences of a right graph may exist in the host graph, and
the selection will affect the parsing result. Even for the most restricted
classes of graph gramumars, the membership problem is NP-hard (Rozen-
berg 1986). Consequently, a parser may not recognize a syntactically cor-
rect graph or be inefficient in analyzing a large and complex graph. To al-
low efficient parsing without backtracking, we are only interested in
confluent graph grammars. Informally, the confluence requires that differ-
ent orders of applications of productions achieve the same result. Fig. 3.5
illustrates a parsing algorithm for confluent grammars, which only tries
one parsing path. In other words, if one parsing path fails, other parsing
paths will also fail.

3.5 Graph Parsing 47

I?arsing (HostGraph host)
while (host I=NULL)
matched = false;
for alt peProductions
If (Redexi=NULL)
R-application(host, p, Redex);

Matched = true;
}

}
if (matched == false)

print {“Invalid”);
) exit(0);

}
b

Redex = FindRedexForR(host, p);

Fig. 3.5. The parsing algorithm

3.5.2 Object Sequencing

Searching for a redex in the host graph becomes the key to the parsing
process when the parser needs not care about the application order. With-
out an order imposed on objects mthaangmalﬂamed(}mphﬁmmmw
seamhmg for m objects in a host graph G runs in O(m*G[™) time as shown
in the previous chapter. With the layout information found in the host
graph and productions, we should be able to narrow the search space for
the parser. Our idea is to sequence the visual objects in each of the host
graph and right graphs of grammmar productions into an ordered list so that
efficient string-matching techniques can be used to find the redex in the

host graph.

48 Chapter3 Spatial Specification

Fig. 3.6 proposes the algorithm FindRedexForR to find a valid redex in a
host graph according to a given production. It proceeds as follows:

1. Emncode the objects of the host graph into a sequence, called host se-
quence;

2. Encode the objects in the right graph of the production into a se-
quence, called pattern sequence,

Redex FindRedexForR{HostGraph G,
Production P)

{

H=SequencaHostGraph(G);
R=SequenceRightGraph{P.R});
Index=Sequencalndex(R);

redex = match{H, R, index, P, G);
return redex;

Fig. 3.6. The FindRedexForR algorithm

3. Search for the pattern sequence in the host sequence as iflustrated in
Fig. 3.7.

Redex match {(Sequence H, SBequence R,
link Index, Production P, HosiGraph G)
{ i=1; redex=NULL;
while {(i=lG])
{ for all keindex[H[i]}
{ UpdateSet(k);
if (k==[R})
redex = VerifyNSObj(P, G);
if {redex I= NULL)
retum redex; }

i+

}
return redex;

i

Fig. 3.7. The match algorithm

The first step of the algorithm FindRedexForR is to sequence the visual
objects of the host graph according to their physical positions. Object a is
ordered before object b (a’s index < b’s index) if @ has a larger y-
coordinate than b. If two objects have the same y-coordinates, their order
in the host sequence is determined by their x-coordinates, and the object

3.5 Graph Parsing 49

with a smaller x-coordinate holds a smaller index, We assume that the ori-
gin locates at the left-bottom corner of the screen, and the y axis extends to
the north while x axis to the east. A unique order is imposed on the visual
objects of the host graph according to their physical positions from top to
bottom, and from left to right when objects share the same y-coordinate.
As mentioned before, shapes of objects are approximated as rectangles,
and the coordinates of central points are used to represent the physical po-
sitions of objects in the sequencing process.

In the right graphs of productions, spatial relationships are specified
through visual notations instead of physical drawings. In order to sequence
the right graph, we first generate a directed acyclic graph (DAG) based on
the spatial specification in the right graph, and then perform topological
sorting on the DAG to derive a unique pattern sequence. In other words, a
node in the DAG represents 2 visual object in the right graph, between
which a north-south or west-east relationship is denoted by a directed
edge. A DAG denoting north-south/west-east relationship is called V-
DAG/H-DAG, In summary, as the second step of FindRedexForR, Se-
quenceRightGraph first generates a V-DAG and an H-DAG, and then per-
forms topological sorting to obtain the patiern sequence. It proceeds as fol-
lows (the following description only illustrates how to generate a V-DAG,
and the same principle applies to the generation of an H-DAG):

1. Create nodes for visual objects in the right graph: a node is created
to represent each unique visual object. However, no node is intro-
duced for the object which has no spatial relationship with any other
objects in the right graph.

2. Inter-connect nodes: in the right graph, if an object is defined locat-
ing south-west, south, or south-east to another object, a directed edge
is introduced to connect the two corresponding nodes from north to
south,

3. Perform topological sorting: insert into the pattern sequence a visual
object represented by a V-DAG node that has no incoming edge. If
there is more than one node without incoming edges, insert the left-
most object by traversing the H-DAG. After insertion, delete the
node and its associated edges in the V-DAG. Iterate this step until
the V-DAG becomes empty.

In the right graph, a visual object is a non-spatial object if it has no spatial
relationship with other objects; otherwise, it is a spatia/ object. A non-
spatial object will not appear in the pattern sequence. In other words, we
ignore such an object in the process of searching for a pattern sequence in
the host sequence, and process it later in the VerifyNSObj procedure as
shown in Fig. 3.7.

50 Chapter 3 Spatial Specification

Lemma 3.1: There exists & unigue order on spatial objects in the right
graph of a production P=(L,R) iff Vo, o.eN®, (010 and 0,.Y0¢) =
(01102 or 0,_"04), where o..."0; and o,.."0, denote no path between o; and
o) in the V-DAG and H-DAG respectively, and o,."o; and o,."o; indicate a
path between o; and o;in the V-DAG and H-DAG respectively.

Proof:

(1) Given that there is a unique order on spatial objects, we assume that

Yo, o 05 index < 0,"s index:

Case 1. There is a path from o, to 0, in the V-DAG, i.e. 0 -Yo,, which
contradicts with the condition 0;.."0,.

Case 2: There is no path from o, to o, in the V-DAG, i.. 0,-"0;. Accord-
ing to the assumption, it follows that 0,..Y0;. The condition of 0,-."0;
and 0;.. 0y indicates that we cannot determine the order of o, and o,

in the V-DAG. Based on the third step of SequenceRightGraph and
the assumption, it follows that 0,-"o,.

Therefore, Yo, 0,€N, (01 02 and 0.V 0;) = (0;-"0; or 0,-"0y).

(2) Assume Yoy, 0y, (01«0, and 0y '01) = (0,70, or 03-"0;). We prove
that there is a unique order on spatial objects.

o Ifo;-Y0, 0,°s index < o,’s index;
e If0,-Y0,, 0;°s index < o,’s index; otherwise,
e Since (0, 00 and 0, 0,) is satisfied, either (0;--Po,) or (0,-"0,) is

true. It follows that there is an order between o, and 0.
Therefore, there exists a unique order on spatial objects. gy

If two objects’ order cannot be determined on their available spatial infor-
mation in a right graph, we supplement additional spatial specifications to
ensure & unique sequence.

By sequencing host graphs and productions, the problem of searching for a
sub-graph in a host graph becomes that of searching for a pattern sequence
in a host sequence. With a pattern sequence containing m objects, (m-71)
sets are required to record sub-sequences of the host sequence. In particu-
lar, each sub-sequence in the K" (k<m) set satisfies the following two re-
quirements: (1) it matches the first k objects of the pattern sequence; (2) a
morphizm can be found between the first & objects of the pattern sequence

3.5 Graph Parsing 51

and their corresponding objects in the sub-sequence. Initially, all sets are
empty and a new sub-sequence is obtained by extending it with an appro-
priate object, Furthermore, each object of the host sequence maintaing a set
of pointers, which point to sub-sequences including the object. From the
first object of the host sequence, the match algorithm as shown in Fig, 3.7
proceeds as follows:

1. Assume that the class of the current visual object a (we treat the type
of a node as its class) takes the /* position in the host sequence and
the ¥ position in the pattern sequence. A new collection of sub-
sequences is obtained by extending all sub-sequences in the (k-1)™ set
with object a. We need to exclude a sub-sequence from the collection
if no morphism exists between the first £ objects of the patiem se-
quences and their corresponding objects in this sub-sequence. Since
all sub-sequences in the (k-1)* set have been verified that a morphism
exists, we only need to check the morphism between the &* object
and any j* (j<k) object of the pattern sequence and their correspond-
ing objects in the sub-sequence of the host sequence. In other words,
if no morphism exists between the ¥ object and the /* object of the
pattern sequence and their corresponding objects g and b in a sub-
sequence, we climinate that sub-sequence from the collection. After
verifying all the previous (-1} objects, the remaining sub-sequences
satisfy the above two requirements, and are added to the &” set.

2. Move up to the next object in the host sequence, and go to Step 1.

3. Whenever a pattern sequence is found in the host sequence, the non-
spatial objects excluded from the pattern sequence are searched for in
the remaining objects of the host sequence. Identify a morphism of
the structural relationships defined in the right graph among non-
spatial objects and spatial objects with those presented in the host
graph. If the non-spatial objects are found in the host sequence and
their morphism is confirmed, a redex is found and a graph transfor-
mation is performed.

By ordering visual objects according to their spatial relationships, we can
reduce the searching space, and thus perform an efficient matching. As il-
lustrated in Fig. 3.6, the finction SeguenceHostGraph generates a host se-
quence, and SequenceRightGraph obtains a pattern sequence. As an exam-
ple, Fig. 3.8(a) presenits a host graph and Fig. 3.8(b} illustrates a
production, where subscripts are used to distinguish visual objects of the
same class. The corresponding host sequence and pattern sequence are
demonstrated in Fig. 3.8(c) and (d) respectively. Moreover, the function

52 Chapter 3 Spatial Specification

Sequencelndex (see Fig. 3.6} is used to calculate the positions of the visual
classes in the pattern sequence. Since a visual class may take more than
one position, we use set to represent indices of classes. In the above ¢xam-
ple, the If class holds the first position, and thus Index(If)={1}; the State-
ment class occurs twice with Index(Statement)={3,2}; and finally In-
dex{Endif)={4}, as shown in Fig. 3.8(e).

o

() Ahostgraph [1f; (b) A production - :
¥
]
— Al
=]
! -
[Statement] [Statement;] [Statement] Sthiterpnt | 1= [S Sifemfri:
B Ll
L) 1B}
o
S B S i
{z) Host sequence (d) Pattern sequence
nle & 5] i B 1f, Statement;, Statement,, Endif
Iy, If;, Statement,, Statement, Statements, Endify, Endify
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ et ¥ vl
(&) Indexing pattern sequence ;iiﬂ gatched E%ub-muaace !
. Yo - " = I {3
=1 (s Y={3,3} Index(Endif) {4’1} E Ifs, Statement,, Statement,, Endif]

Fig. 3.8. Sequencing host graph and production

3.5.3 A Sequencing Example

Fig. 3.9 traces the execution of march for the example in Fig. 3.8. Each ob-
jeet in the host sequence needs to be inspected once before the redex has
been found or until all the objects have been inspected.

Initially, all sets are empty. Since the first object of the host sequence can
be mapped to the first object of the pattern sequence, a sub-sequence con-
taining only one object is obtained at the 1 iteration. Similarly, a sub-
sequence containing the second object of the host sequence, which is
mapped to the first object of the pattern sequence, is generated and inserted
into Set 1 at the 2™ iteration.



53

3™ feration
1]
3ﬂ1={[1}} Set 1= {[I}, 2]} || Set 1= {{1}12]}

1¥ iteration |

Fig. 3.9, An execution trace of FindRedexForR on the example of Fig. 3.8

At the 3" iteration, sub-sequences in Set 1 are extended by appending the
3" object of the host sequence, A morphism exists between the first two
objects of the pattern sequence and the 2* and 3™ objects of the host se-
quence, and thus the sub-sequence [23] is inserted into Set 2. On the other
hand, though the sub-sequence [13] matches the first two objects of the
pattern sequence, the structural verification has failed: the production re-
quires a structural relationship between the two objects, which does not ex-
ist in the host graph.

At the 4 iteration, the 4™ object can be mapped to either the 3™ or 2™ ob-
ject of the pattern sequence. A new sub-sequence [234] is obtained by ap-
pending the 4™ object to the sub-sequence in Set 2, and it is added to Set 3
since a morphism can be confirmed, Another two sub-sequences [14] and
[24] are generated by appending the 4™ object to sub-sequences in Set 1,
Since no morphism is found between the first two objects of the pattern
sequence and the 1% and 4™ objects of the host sequence, the sub-sequence
[14] is excluded. The 4" object of the host sequence can be mapped to ei-
ther 3™ or 2 object of the pattern sequence. Therefore, a dotted edge is
used to point to the sub-sequence, in which this object takes the 3 posi-
tion, and 2 solid edge to the other sub-sequence.

Similarly, the sub-sequence [15] is added to Set 2 after processing the 5™
object of the host sequence. At the sixth iteration, a pattern sequence,
which meets both structural and spatial configurations as shown in Fig.
3.8(f), is found in the host sequence. Since there are only spatial objects in
the above example, FindRedexForR terminates and a redex is found.



54  Chapter 3 Spatial Specification

3.6 Complexity Analysis

We now proceed to analyze the parsing complexity of the presented spatial
graph grammar formalism. In the host sequence of a host graph, a sub-
sequence matching the pattern sequence of a production is called a quasi-
redex. If the non-pattern objects in the production find their matches in the
host graph, the non-pattern objects in the host graph together with the
quasi-redex construct a redex.

Theorem 3.1: The time complexity of searching for a redex in SGGs is
O((m+n)’.161" |G|™, where m and n are the maximal numbers of pattern

and nmpaﬁem objects in the right graphs of all the productions in the
grammar,

Proof: With m pattern objects and » non-pattern objects of a production,

6"

there are O ) sequences for a quasi-redex and O(/G{") sequences for

"
non-pattern objects. Each quasi-redex requires O(m*+n*+mn) time to iden-
tify a morphism. Therefore, the time of searching for a redex takes

O((m*+n’+mn). LS 1" |G") (<O((m+n)”. L6 1" |G])). m

et
In particular, we discuss three special cases:

1. m=0: No spatial information is specified in the productions, and the
SGG degenerates to the RGG. The time complexity is D(nz,lﬁ«f"),
equal to that of the RGG.

2. r=0: No non-pattern object is specified in the productions, and the
time complexity is O(m®. 16]" ).

mi

3. m#0, n=0: The productions include both pattern and non-pattern ob-
jects, and the time complexity is O((m+n). 6" .|GI)
m!

(£O((mrn)|G™™)).

Therefore, searching for a redex in the SGG is always more efficient than
that in the RGG.

Theorem 3.2: Given a host graph G with a grammar, the time complexity
of the proposed algorithm searching for a redex is O(mAGI+k(m+n)*G["),
m and s are the maximal number of pattern and non-paitern objects in the



3.6 Complexity Analysis 55

right graphs of all the productions in the grammar, and (k-7} is the number
of guasi-redexes processed before the first redex is found.

Proof: The function SequenceRightGraph converts the right graph of a
production into a DAG, and finds the longest path of the DAG to represent
the pattern sequence. Since there are O((m+n)’) relationships (i.e. edges),
SequenceRightGraph runs in O((m-+n)’) time.

The function SequenceHostGraph generates a unique sequence from a host
graph, and takes O(G{lg|G]) to sort the y~coordinates and x-coordinates.

The function match searches for a redex in the host graph. It proceeds as
follows: 1) look for a quasi-redex in the host sequence; 2) then identify
non-pattern objects in the host graph. The i object in the host sequence is
paired with each /* object (j<i). We check whether there exists a mor-
phism between each of such pairs and its corresponding pair in the right
graph. Since an object can be matched to m positions at most in the pattern
sequence, the time complexity of verification is O(mi) x O(m), i.e O(’i).
Since there are |G| objects, the time complexity of searching for a quasi-

redex is 0(%»2;) = O(’|G}?). Once a quasi-redex is found, we need to
=1

identify non-pattern objects in the host graph, which takes O((n+m)®) (the
time of verifying whether there exists a morphism between visual objects
in the right graph of a production and their occurrences in the host graph)
by O(G|") (the number of sequences of non-pattern objects), ie.
O((m+n)’|GI"). Since there are totally (k-1) quasi-redexes before the first
redex is found, the time complexity of the second step is ng(mm)zlﬁl“).
Therefore, the time complexity of match is O(m®|G+H(m+n)’|GI").

Consequently, the time complexity of FindRedexForR is
O(’|Gf*+k(mr+n)|G").

Theorem 3.3: The time complexity of the parsing algorithm for a graph G
is O(MAGP +k{m+n)JGI™"), m and n are the maximal number of pattem
and non-pattern objects in the right graphs of all the productions, and (k-1)
is the number of quasi-redexes processed before the first redex is found.

Proof: We have proven that the total time complexity of FindRedexForR
is Om?G +k(m+n)’|G["). Since G — A must finish within G.T(p)
steps, where G.T(p) = (2C)|G| (full proof for this step can be found in the
proof for the RG(G’s parsing complexity in Chapter 2), the time complexity
of the parsing algorithm is (2CFIG| * O(’|GP+k(m+n)iGl) =
O(m’|G+k(mr+n)’|G™"). g



56 Chapter 3 Spatial Specification

Therefore, due to the additional spatial information available to the parser,
parsing spatial graph grammars is generally faster than parsing non-spatial
reserved graph grammars,

3.7 Summary

Physical layout and abstract structure are two aspects of a graph. This
chapter has presented a spatial graph grammar formalism, which intro-
duces spatial relationship info the abstract syntax as language constructs,
In order to automatically verify structural properties of graphs defined
through a graph grammar, a parser is indispensable.

This chapter has described in details a deterministic parsing algorithm for
the SGG. The parser runs in polynomial time with confluent grammars.
Briefly, the parser sequences objects in the right graph of a grammatical
rule according to some spatial criterion (e.g. the direction). Then, the same
criterion is applied to sequencing objects in a given graph o be parsed.
Consequently, sub-graph matching can be performed by searching for the
common sub-string of two generated sequences, which satisfies the con-
nectivity requirements. Taking advantage of the spatial information, the
SGG parser improves the complexity over its non-spatial predecessor, i.e.
the RGG, To avoid backtracking, the parsing algorithm requires that
grammatical rules need to be locally confluent.

3.8 Related Work

Rekers and Schiirr (1996) classify the spatial relations graph (SRG) and
abstract syntax graph (ASR). The former is geared towards visualization,
and the latter towards interpretation. A grammatical approach is proposed
to build the interdependencies between SRGs and ASRs,

Brandenburg (1995) presents a layout graph grammar consisting of an un-
dertying context-free graph grammar and of layout specifications. Spatial
relationships are derived according to the drawing of productions. A desir-
able layout is achieved by satisfying those constraints. One serious draw-
back of the approach is that grids and planar graphs cannot be captured by
context-free graph grammars (Brandenburg 1995).

Those formalisms explore spatial relationships merely from the layout per-
spective. On the other hand, in the SGG, spatial relationships directly con-



3.8 Related Wortk 57

tribute to the interpretation of a graph, and are considered as langnage con-
structs like nodes and edges. Furthermore, with the extended expressive
power, the SGG is also capable of generating a syntax-directed layout
through a sequence of graph transformations, in which the spatial informa-
tion of the post-condition specifies a desirable layout among involved ob-
jeets.

Picture description formalisms, e.g. the constraint multiset grammar
(CMG) (Marriott 1994), provide a high level framework for the definition
of visual programming languages. An incremental bottom-up parsing algo-
rithm is proposed to verify the membership for cycle-free CMGs. The al-
gorithm encodes a CMG as a logic program by adding an extra attribute to
each token which represents the multiset of terminal tokens,

Many proposed graph grammars, such as the NLG graph grammar (Engel-
friet and Rozenberg 1997), fall in the category of node replacement graph
grammars, where a node of a given graph is replaced by a new sub-graph
connecting to the remainder of the graph by new edges. Brandenburg
(1988) investigates the complexity of node rewriting graph grammars, and
concludes the character distinguishing polynomial time graph grammars.
Those parsing algorithms are based on context-free graph grammars.

Being a context-sensitive graph grammar, the Lavered Graph Grammar
(LGG) is equipped with an exponential parsing algorithm (Rekers and
Schiirr 1997). Iustead of exhaustive search, the parser uses a breath-first
search algorithm such that possible sub-derivation are constructed and ex-
tended in parallel instead of re-computing them multiple times. Filters are
used to discard useless sub-derivation as soon as possible.

Extending the LGG, Bottoni et al. (2000} proposes the Contextual Layered
Graph Grammar (CLGG), which provides new constructs, such as nega-
tive application conditions and complex predicates. The parsing algorithm
of the CLGG is improved over that of the LGG through the application of
critical pair analysis (Plump 1993). More specifically, non-conflicting
rules are first applied to reduce the graph as much as possible. Afterwards,
rule application conflicts are handled by creating decision points for the
backtracking (Bottoni et al. 2000).



Chapter 4 Multimedia Authoring and Presentation

4.1 Introduction

With the rapid advance of the Internet and Web technology, an increasing
amount of graphs and media contents are delivered on the Web. On-ling
multimedia presentations, such as news, need to be constantly updated.
The content and the presentation structure of an on-line multimedia
pragenmﬁm may also be frequently updated. At the client side, there are
various kinds of viewing conditions, such as varying screen size, style
preference, and different device capabilities. For example, consider a
diagram representing an nrgamzanﬂnal structure on the Web that may be
of considerable complexity occupying a large screen space, and thus may
be unsuitable for small displays (Marriott et al. 2002). Thus, if the diagram
is to be viewed on the screen of a mobile device, such as a PDA (Personal
Digital Assistant), the original diagram layout may not be appropriate.
Another example is a news Web site, which generally needs to be
constantly updated with the incoming news items. Such a site may have to
adapt itself frequently to the changing space and style requirements for
different news categories. The ability of dynamically adapting its layout
would be highly desirable. There are also increasing demands for
accessing on-line multimedia documents from mobile devices such ss

gﬁ&sﬁm current document markup languages such as HTML and WML,
the layout of a8 Web page is relatively static and fixed (Borning et al.
2000). When the user’s requirement or the device capability is changed,
the layout may become unsatisfied. The reason is that such markup lan-
guages do not provide any mechanism powerful enough for specifications
to be adaptable to the changing context. Though SMIL (W3C 2001) and
CS88 (W3C 2004b) provide more flexible markups for multiple alternative
layouts, the markups provide absolute layout functionality, rather than
adaptive to the user’s intention or the existing layout. Therefore, a
meta-level design mechanism capable of adapting multimedia presenta-
tions in response to the dynamic changes in information content is highly



60 Chapter 4 Multimedia Authoring and Presentation

desirable. We need a sound but practical formalism that snpports automatic
adaptation to the change of media contents, display environments, and the
user’s intention.

To illustrate the concept of multimedia adaptation that we perceive, we use
Ishizaki’s schematic diagram of a process between content creation and in-
formation reception (Ishizaki 2003) as depicted in Fig. 4.1. The design sys-
tem should be able to adapt itself to the changes in information content and
in individual users’ intentions. As mobile devices provide an increasing
proportion of on-line content accesses, we argue that a multimedia author-
ing system should support an additional type of context changes — i.e. ad-
aptation to the change of device capabilities. In other words, the designer
of a multimedia system needs to be able to specify how the presentation
would evolve based on the change of environments (e.g. from a desktop
screen to a mobile display panel), user’s intention (e.g. zooming in or out),
and information content (e.g. news update).

Designer
1 Users
: : — T, OO0
Information o D= ] —
!I?onmt sygg Media I 0{}0
) - L

Fig. 4.1. Multimedia presentation design and delivery process

This chapter presents a visual language approach, specifically a spatial
graph grammar, for adaptive multimedia authoring and presentation. It fo-
cuses on the issues and techniques for size adaptation and style adaptation
in response to the change of device requirements and user’s interactions.
The approach is highly intuitive yet also sound in theory. The central
theme of this chapter is to demonstrate how to use a graph grammar for-
malism to visually specify and support automatic transformation and adap-
tation of multimedia presentations. The approach has two major advan-
tages due to its meta-tool capability: a graphical authoring tool can be
automatically generated by a visual language generator, such as VisPro to
be described in Chapter 8; and the generated authoring tool can be used by
novices who have no computing knowledge.

The chapter is organized as the following. Section 4.2 introduces the spa-
tial grammatical representation and specification and focuses on adaptation
techniques to support size and style changes of multimedia presentations.
Sections 4.3 and 4.4 demonstrate size and style adaptations by going



4.2 Adaptation to Context Changes 61

through two real-world examples. Section 4.5 presents a system architec-
ture implementing the grammatical approach. Section 4.6 summarizes the
chapter. Finally, relevant materials for further reading are reviewed in Sec-
tion 4.7.

4.2 Adaptation to Context Changes

As discussed at the beginning of the chapter, context changes may be due
to the change of information contents such as a traffic monitoring system,
device capabilitics such as from a desktop screen to a PDA panel, or the
viewer’s intention. A graph grammar based approach is able to adjust the
appearance to different displaying environments.

This section outlines automatic adaptation of the size and style of a multi-
media presentation in response to any of these changes, though other as-
pects of adaptation may also be supported by the graph-grammar approach.
Detailed example adaptive presentations will be discussed in Sections 4.3
and 4.4.

4.2,1 The Marking Scheme

As described in Chapters 2 and 3, the marking mechanism plays a central
role in the specification and parsing of reserved and spatial graph gram-
mars. To apply the marking technigue to multimedia adaptation, we will
demonstrate the power of spatial graph grammars. Consider & simple ex-
ample in graphical presentation: a vertical layout provides a different vis-
val perception and requires a different screen (usually smaller) estate from
a horizontal layout, as shown in Fig. 4.2. This is one of the most common
issues in graphical design and can be effectively applied to transforming
Web graphics to suit small screen mobile devices. Fig. 4.3 depicts the re-
writing rule (production) for this required transformation.

Since there may be multiple nodes chained in the same direction, we mark
the vertices on the both ends of the two nodes by attaching unique integers
to the vertex labels (ie. “N:1” and “8:2"). This means that during trans-
formation, the edges connected to both ends will be reserved. The direc-
tion change from horizontal to vertical is reflected in the positions of the
vertices, as explained in Section 4.2.3. The edges between the nodes will
be shortened after transformation, as specified by “-8” and “-N”,



62 Chapter 4 Multimedia Authoring and Presentation

pmmmmmm———n——
1 3
L]
> - O O O ¥
¥ K
' : :
H [ 1 I
¥ 3 ¥ ¥
' l E i i 1 I P - ' X
X ] ¥ ]
I ¥ ¥ ¥
:
2, ¥
(a) '
1 1
TN o v e e v o o o

= o

le

R i ]

Fig. 4.3. A production for the trapsformation in Fig. 4.2

4.2.2 Size Adaptation

The most typical application of size adaptation is for Web display layout to
be reduced to suit mobile devices. The simplest solution to the problem of
the limited screen size is linear scaling (or rormal zooming), but this is of-
ten not the best way. A more elaborate technique is differential scaling, in
which different components of a document are scaled differently. Differen-
tial scaling is effective in compressing white spaces. For example, rather
than performing a linear scaling, each white space is compressed, while the
box sizes are maintained (Marriott et al. 2002), as illustrated in the simple
example in Fig. 4.4. To specify such a transformation, we can use distance
relationships as shown in Fig, 4.5.

To represent the change of a node size, we use *+” in the node’s center
box to indicate that the node will become larger (or zoomed in as discussed
below) in the transformation, “-” for smaller (zoomed out), and blank for
unchanged size.



4.2 Adaptation to Context Changes 63

L —"A F——"_ 1

¢
I o I B

by

Fig. 4.4. An example of differential scaling

T
]

T ¥
1] ]
¥

: T
S T S B O
El—iwp QB2 = Pt [E 1 B2
EOE - R
¥

ook

P

[ p—

¥
-
¥

Fig. 4.5. Grammar specification of differential scaling in Fig. 4.4

4.2.3 Style Adaptation

To suit different display spaces and devices, the layout of individual media
objects and that of the entire document may need to be adapted. One of
such adaptation techniques is known as alternative layout, Fig. 4.6 illus-
trates a typical example of alternative layout. Originally object B is on the
right of object 4. After transformation, as in Fig. 4.6(b) and Fig. 4.7(b),
object B is at the bottom of object A4, thus the locations of vertices E and W

have also changed.

Another type of multimedia style adaptation is called semantic zooming
(Marriott et al. 2002). For varying interest in detail, an adapted layout may
initially show one level of details. It allows the viewer to zoom in hierar-
chically, while adapting the layout level of each individual component or
group of components to the available screen size or to the viewer’s prefer-
ence. For example, we may need to enlarge one part, in which the user is
particularly interested, while compressing nnrelated parts, as illustrated in
Fig. 4.6. We need to look into the detail of object 4 first, s0 we may view
the details of 4 and B separately. Fig. 4.6 illustrates the combined effects
of alternative layout and semantic zooming. Fig. 4.7 depicts the snapshots
of using grammatical rules to achieve the style transformation from (a) to
(b), including the reduced size of B, and shortened distance between A and
B in (c).



64 Chapter 4 Multimedia Authoring and Presentation

In some systems (Muchaluat et al. 1998), the above viewing technique is
called fisheye view. More commonly accepted concept of fisheye views re-
fers to the geometric distortion technique when highlighting a focused area
of a large display (Sakar and Brown 1994). Geometric distortion enlarges
the focused area while proportionally reducing other arcas depending on
their distances to the focused area. Hyperbolic trees (Herman et al. 2000)
offer another similar viewing technique, widely used for Web browsing.

A

(@) (b}

Fig. 4.6. Semantic zooming with an alternative layout

H I
P ke Lo e e
v
" P e e =
H "

e H - E HE-
YA wiie - |
g e e o ¥ 23
v X [ HEEH
b e i T
4] B
: - e o e e e o
1% [

" 3 i 1

L] (b}

.
£

Fig. 4.7, Application of semantic zooming and distance rules to achieve the effeet
in Fig. 4.6

4.3 Example 1: Adapting Sizes for PDA Displays

This section and the pext section focus on two detailed examples of size
and style adaptations through grammatical specifications and graph trans-
formations. This section describes how to transform a desktop Web page
to several small pieces for mobile Web browsers — an example of size ad-
aptation.



4.3 Example 1: Adapting Sizes for PDA Displays 65

4.3.1. Original Web and Resulting PDA Presentations

Fig. 4.8 shows the popular NASA home page, whose size and layout may
be adapted to suit small screen Web browsers. We will transform this page
into the WML format to be displayed on PDAs, The XML description for
the above Web page is as the following:

Fig. 4.8, The original NASA home page

<?xml version="1.0" encoding="I80-885%-1" 7&
<page>
<sectionl>
<blockl>
<Logo>
<pic>
<id> nasa </id>
<sourcer ,/images/nasa.bmp </source>
</plo»
</ Logo»
<texib>
02.01.03 Building Planets in Cyberspace
</text>
</blockl>
<blockd>
<theme>
<pic>
<id> shuttle </id»>
<source> ./images/shuttle.bmp </source>
«/pia»
</ theme>
<huttons
<link>
<pie
<id> missions </id>



66 Chapter 4 Multimedia Authoring and Presentation

<gourger ./images/missions.gif </source>
</pic»
<href>
http: //wew, nasa.gov/missions/current/
<fhref>
</ link>

</button>
</block2»
</sectlonl>
<section2>
<pio>
<id> improve life </id>»
<source> ,/images/improvelife.bmp </source>
<fpler
</section2>
</page>

Assume the desirable outcome as illustrated in Fig. 4.9, We divide the
original Web page into four small pages based on the four images, and
copy the top-left heading information and top-right hyperlinks to all the
small pages. As a result, each small page contains three parts: the top part
contains date and title (tagged “Text™) and NASA logo (“Logo”), the mid-~
dle part is an image (“Theme” or “Picture™) and the bottom part contains
three hyperlinks (“Link™).

Fig. 4.9. Resulting presentation as four pages on a PDA

The output tree structure is translated into a WML document. Each page or
a single interaction between a user agent and a user is known as a card.
One advantage of this arrangement is that multiple screens can be
downloaded to a client in a single retrieval and vice versa. Our task is sim-
ply to transform the XML description into several cards, each to be dis-
played as a PDA page. The following is part of the WML document for the
PDA presentation in Fig, 4.9, where “card” represents a separate page:



4.3 Example 1: Adapting Sizes for PDA Displays 67

<wml >
<gard id="sectionl® Title="pasa">
<p>
<img sro=",/images/nasa.ipg™ alt="garth” /=
02.01.03 Bullding Planets in Cyberspace
“/ps
<pi»
<img sro="./images/shuottle.bmp” alt="shuttle” />
<lp>
<p>
<img sre=", fimages/missions.bmp” alt="shuttle” />
<img sro="./images/multimedis.bmp” alt="shuttle”/>
<img sro="./images/eventa.bmp” alt="shuttle”/>»
<fp>
</cards
<pard id="improve" Title="improve life">
<p
<img sro="./images/nasa.ipg” alt="earth®/»
02.01.03 Building Planets in Cyberspace
<fp>
<pz
<img sro="./images/improvelife.bmp” alt="improve life”/>
<fp>
<p>
<img sro="./images/missicns.bmp” alt="shuttle”/>
<img sro=".fimages/multimedia.bmp” alt="ghuttle”/>
<img sro="./images/events.bmp” alt="shuttle”/>
</p»
<card>

</wml>

4.3.2 Structural Transformation

Each Web page is a multimedia document that has a layout constructed by
many media objects. We start by analyzing the logical structure (automati-
cally generated as a tree) and desired layout and adaptive properties of the
given Web page. In the Spatial Graph Grammar, each object is presented
by a node. A Web page in XML is a tree structure whose elements can be
grouped hierarchically, as shown in Fig. 4.10 for the given example. To
convert the tree to a more structored arrangement suitable for transforma-
tion, we need to introduce the concepts of logical nodes and grouping. The
tree containg several logical nodes (LNs) such as Page, Sectionl, Section2,
ete. As the root, Page contains two Secfion nodes. Sectionl contains two
Block nodes. Block! contains Loge and Text, and Block2 contains Theme
and LN Button. LN Button includes a number of Link nodes. Section2 has a
nuober of child nodes, called Pictures. Such hierarchical relationships can
be automatically derived from the XML document and used to generate the
data strueture in Fig. 4.11.



68 Chapter 4 Multimedia Authoring and Presentation

[ section2
Y

Fig. 4.18, Tree structure of the Web page

LM(Sectionl) N(Page) LM(Section2}
. o ” ! > ol P9
LN(Blockl) LN(Block2)
e -‘3 ’f' “‘
#N(Blockl) N7 N(Block2) \
O  Non-terminal
[oee—{Tex] “W—:ﬂu LN@UIOD) ] erms
— P . erming
-, -~
. N(Button) .~ Ahstract

Fig, 4.11. A hierarchical data structure

We use an abstract node to head a group that has many objects of a single
type. Such a group header has a generic set of attributes applicable to the
whole group. Each group member inherits from its parents” attributes such
as vertices with spatial information, This arrangement improves the pres-
entation efficiency, Using the concepts of groups and LNs, we only need to
consider spatial relations of a node with its parent, child and sibling nodes
(i.e. direct relatives). For example, we will consider the relationship be-
tween the siblings LN Blockl and LN Block2, but not the relationships be-
tween the children of N(Blockl) (i.e. Logo, Text) and those of N{Block2)
(i.e. Theme, N(Button)). Combining the spatial information from Fig. 4.8



4.3 Example 1: Adapting Sizes for PDA Displays 69

and above logical and hierarchical information from Fig. 4.11, the host
graph in Fig. 4.12(a) can be automatically generated to be processed by the
spatial graph grammar. The application of the SGG generates the new lay-
out structure in Fig. 4.12(b) for PDA presentations, as explained in the
next subsection.

pmmmmmmmmmmmmmmmmm”u‘

@ ®

Fig. 4.12. (a) Host graph of the original structure  (b) The resulting layout struc-
ture

4.3.3 Grammatical Specification

In order to perform the desired transformation, we define a set of produc-
tions as illustrated in Fig. 4.13. There are two right graphs for some pro-
ductions. The right graph not enclosed in a dashed box participates in syn-
tactical parsing, and, together with the left graph, will be called a symtax
production or simply § in the following description. The right graph en-
closed in a dashed box is used for the layout transformation, and, together
with the left graph, will be called a Jayour production or simply L. A set of
L productions generates a new layout either from an existing layout or
from logical relationships between media objects.



70 Chapter 4 Multimedia Authoring and Presentation

Syntax Productions

Syntax production <1> (or simply S<1>) expresses the initial state. If 8
parsing eventually reaches the state A (initial state), it is regarded as suc-
cessful (Zhang et al. 2001a}.

S5<2> illustrates that such a page (NASA Homepage) consists of Card and
PHead, and Card is on the top of PHead. S<3> abstracts a Card from Sec-
tionl,

8<4> specifies that Sectionl contains two blocks, and Blockl is side by
side with Block2. The vertex in gray color in a node means that it is
marked and will be reserved during parsing. For example, the vertex la-
beled P is marked, and will stay unchanged after parsing.

S<5> specifies that Blockl consists of Text and Logo, and Text is directly
on the top of Logo. The vertices labeled P and D are marked.

S<6> indicates that Block? includes Theme and LHead. LHead is a Group
Header in the Link structure, and used to inherit the attributes from its par-
ents. If the Link structure contains many members, using LHead will sig-
nificanily improve the efficiency of the graphical presentation. To repre-
sent the containing relationship between Theme and LHead, we use dotted
boundary in LHead, and connect the two nodes’ central grids.

S<7> specifies that the Link structure consists of several terminal nodes of
Link, stagked on top of each other.

S<8> and S<9> indicate that Section2 includes several Pictures. In S<8>,
PHead and Card can be reduced to PHead. Card is an intermediate node
and can be abstracted from Picture (Pic for short) by using $<9>, We can
apply 8<9> continuously until no terminal node exists,

The R-application in the SGG is a parsing process, which in general con-
sists oft selecting a production from the grammar and applying an R-
application of the production to the host graph, and the process continues
until no productions can be applied, If the host graph is transformed into
an initial graph , the parsing process is successful and the host graph be-
longs to the language defined by the graph grammar. We first use S<9>
and S<8> to reduce the Picture structure to PHead. 5<7> is used to reduce
the Link structure to LHead. 3<6> is then used to reduce LHead and
Theme to Block2, and S<5> to reduce Loge and Text to Blockl. Then we
use S<4> to obtain Sectioni. Finally, 8<2> reduces Card and PHead to
Page and S<1> to A, and thus the parsing process is successful.



4.3 Example 1: Adapting Sizes for PDA Displays 71

X Ty {

I W T

8

o .. o S .. .

7 s v o

X s e o o .

Fig. 4.13. Productions for the transformation from the presentation in Fig. 4.8 to
the one in Fig. 4.9



72 Chapter 4 Multimedia Authoring and Presentation

Layout Productions

Based on the above syntax productions for parsing the host graph, we add
several extended productions enclosed in dotted boxes called layout pro-
ductions for transforming the presentation in Fig. 4.8 to the one in Fig. 4.9.
The layout productions are thus an additive set to the syntax productions.
Combining these two sets of productions, we can generate the desirable
layout.

Layout production <4> (or simply L<4>) transforms Block! and Block2
from the horizontal relationship to vertical relationship with Blockl on top
of Block2.

L<5> transforms Text and Logo from a vertically touching relationship to a
herizontally touching relationship.

L<6> specifies how to transform two objects from a containing relation-
ship to a vertical relationship. Before the transformation, Theme contains
LHead. After the transformation, Theme is on the top of LHead.

L<7> transforms a sequence of Links from vertically touching relation-
ships to horizontally touching relationships that is repeatedly applied.

In L<9>, when Picture with left and right vertices finds a match, it is con-
verted to a Blockl-Picture-LHead structure, whose three nodes are verti-
cally aligned along the left edges.

We first parse the host graph in Fig. 4.12(a) to A. During parsing, a stack is
used to record the sequence of the productions being used. Then from 2,
the original parsing tree is retrieved. At each step, the corresponding layout
productions are popped from the stack to perform layout transformations.
For example, when Card with its southern vertex is matched, 5<3> is used
to generate Sectionl. Then, we use L<4> to obtain a new layout in which
Blockl and Block2 hold a vertical relationship. For Blockl, L<5> is used to
derive a horizontal relationship between Logo and Text. Using L<6>,
Theme is moved to the top of LPHead, L<T> is used to obtain the horizon-
tal Link structure. Now we obtain the first PDA page, represented as Card]
in Fig. 4.12(b). L<9> is used to expand Card to the Blockl-Picture-LHead
structure. Logo and Text are then generated using L<5> and the Link struc-
ture generated using L<7>. We therefore obtain the second PDA page
(marked Card?2 in Fig. 4.12(b)). The third and fourth pages, also of the
Card2 structure, are generated in the same fashion. The layout in Fig.
4.12(b) can be automatically transformed to the final layout illustrated in
Fig. 4.9.



4.4 Example 2: Adapting Presentation Styles 73

4.4 Example 2: Adapting Presentation Styles

This section provides a further example, on the adaptation of presentation
styles.

4.4.1 A Presentation Style

As an exawple for style adaptation, consider an art musewm that organizes
its multimedia documents in a pre-determined logical structure, as shown
in Fig. 4.14. At one exhibition season, the museum would like to display
the documents on the Web as displayed in Fig. 4.15 with the following
presentation organization. The page consists of a menu bar of various hy-
perlinks on the left side for the whole museum, hyperlinks to all the cura-
torial departments on the top, and the collection highlights occupying the
main page area. The highlights of each museum department consist of a
number of well-known art works (iL.e. pictures). Assuming the pictures
need to be displayed with 3 in each row, six pictures of the selected “Paint-
ing and Sculpture Highlights” are displayed in 2 rows by 3 columms in the
main area.

4.4.2 Grammatical Specification

The logical structure of Fig. 4.14 is regarded as a host graph, which is used
to dictate the presentation layout according to a grammar specification.
The complete set of graph grammar production rules that meet the re-
quirements of the presentation style of Fig. 4.15 is listed in Fig. 4.16. The
document mainly consists of two composite objects, Sections and Content,
which participate in Production <2> in Fig. 4.16.

The Sections object consists of a number of hyperlinks, which enable the
user to navigate other museum documents from the same page. The hyper-
links are organized hierarchically. A link at level / may include several
links at level (i+7). The links at the same level are aligned to the left, and
level (i+1) links are indented from its level i links. Production <3> ab-
stracts a terminal node called Link to a non-terminal node Section. Produc-
tion <4> dictates how to reduce two links (represented by two Section’s)
while establishing their spatial relations — vertically aligned and touched
with each other. Production <5> is for reducing the last Section node,
which is characterized by an unmarked N vertex in Section. Production
<6> demonstrates how to attach hyperlinks (upgraded from Link to



74 Chapter 4 Multimedia Authoring and Presentation

Section) at level (i+1) to a hyperlink at level i with right indentation (real-
ized by a partially touched relationship as shown in the right graph of the
production).

Name |{ Home —{Hili
Name 1 Home P-{Hilight
i [Nemme -{ Home - Fiight

[pHeadb{ Tcon - Teon |1 Ec;n | B:Fn F{ Teon J{ Jcon |
| |

[Mius | [Tis | [Ths ] [os ] [Mus | | s |

Fig. 4.14. Host graph of the Museum multimedia docament

Fig. 4.15. A museum multimedia presentation



4.4 Example 2: Adapting Presentation Styles 75

The right part of Context consists of three objects, Title, Depts and Pics as
specified in Production <7> The Title object presents the title of the
document, and is placed above the two other composite ohjects. The Depity
object, representing a list of departments in the museum, consists of multi-
ple Dept objects to be aligned to the left and vertically touched with each
other. As shown in Production <9, each Dept object consists of three
primitive objects, Name, Home and Hilight, which are to be touched with
each other and aligned horizontally. Production <8> reduces two Dept ob-
jects into one, and Production <10> provides the syntax of a Depis object.

A Pic object represents a picture displayed in the main area and has an
Icon and an Hlus objects as specified in Production <11>, The Jeon object
is placed above the Hlus object, and both are aligned to the center. Repre-
senting the highlights of a department to be displayed in the main area, a
Pics object is abstracted from a pHead object in Production <12>, and
consists of multiple Pic objects to be laid out according to Productions
<13> and <14>. By applying Production <13> repeatedly to reduce two
Pic objects into one Pic object, a sequence of Pic objects is generated.

Bince it is required that three Pic objects are displayed in each row, we
need to use action codes to specify the constraint. An action code associ-
ated with a production is like a Java exception-handling method, used to
specify the semantics of the production and to provide additional control
information to the parser. We introduce a global variable, called NumOf-
Col, to record the current number of the Pic objects in the currently row.
Initially, NumOfCol is set to 1 in Production <12>. Every successful appli-
cation of Production <13> increases NumOfCol by 1 until its value reaches
3. Production <14> is applied only when NumQfCol is equal to 3, indicat-
ing that there are already three Pic objects in a row. However, the last row
may contain less than 3 Pic objects. Production <15> handles such a spe-
cial case. Apart from the action code (Production <15> has no action
code), the only difference between Production <14> and <15> is that the N
vertex is marked in <14> and unmarked in <15>,



76 Chapter 4 Multimedia Authoring and Presentation

Ly <7

<
Per}
il
Pio %F \ﬂ
g
= Jum
<P ] {wﬁan (AAMGraph ) : z
l"ig NumOCol =1;
EN }
<IXw i ol ' p—
¥
[ S——
Fid i %—g % ] ®
e ! I ]
?:tinn (AANGraph g} action {AAMGraph g}
if {NumOfCol < 33 i (NumQICol = 3}
NumOfCol ++; 4 NamQiCol = 14;
) el exitl); else exil(y
,

Fig. 4.16. Graph grammar definition of both the document structure in Fig, 4.14
and presentation in Fig. 4,15



4.4 Example 2: Adapting Presentation Styles 77

4.4.3 Adapting to An Alternative Style

Assume in another exhibition season, the museum home page will be pre-
sented in an alternative layout as illustrated in Fig. 4.17, where the main
area has a different arrangement. It would be time-consuming to manually
adjust the layout of each page for 2 large number of similar pages and also
error-prune. Fortunately, the spatial graph grammar provides an adaptive
approach to document presentation since the system can select an appro-
priate set of productions and automatically generate a desirable layout
when the context is changed. To support the above alternative presentation
style, what is needed is simply a subset of new productions that will re-
place Productions <11> to <15>, as listed in Fig. 4.18. By applying the al-
ternative productions, the document not only displays two Pic objects each
row, but also interleaves the Jeor and Hius objects. Other presentation
styles could also be easily adapted by modifying the relevant part of the
grammar. A typical example is when the width of the viewing device is too
narrow to fit three Pic objects, the layout can be adjusted to two Pic ob-
jects or even one in each row.

Fig. 4.17. An alternative presentation style



78 Chapter 4 Multimedia Authoring and Presentation

Fig. 4.18. Revised subset of productions {replacing Productions 11-14 in Fig.
4.16) for generating the alternative presentation style of Fig, 4.17

4.5 System Architecture and Implementation

At the system level, the grammatical approach described above is realized
by four modules as shown in Fig. 4.19: event encoding, event listener, pro-
duction authoring and parser. The event-encoding module lets the user
describe the events, to which the grammar should be sensitive. The event
listener dynamically monitors the system to see if any changes have oc-
curred due to the content update or user interactions, Upon the user’s in-
puts and messages retrieved from the event database by the event listener,
the parser performs the corresponding graph transformation according to

the predefined graph grammar,

The production authoring module provides a tool to define a graph gram-
mar according to the desired document layout and its dynamic behavior.
The grammar dictates how to construct a multimedia document layout
through various types of media objects as described in the previous sec-
tions. A production not only specifies how to construct composite objects,
but also how the constructs look like and adapt to dynamic changes.



4.5 System Architecture and Implementation 79

User Input
dtymhgiz ﬂ Document
Event apatc 4 Parser L&yﬁﬂ.@
Listener ) —>
b | ao—
w”ﬁ’\ U=
Event ] Wm
Database | Authoring
Event
Encoding

Fig. 4.19. A system architecture

The parser validates the structure of a host graph, and automatically gener-
ates a parsing tree, which reflects the hierarchical structure. Also, the lay-
out is adjusted according to the spatial specifications, which are integrated
with the structural specifications. For example, when the user modifies the
font sizes, or device characteristics, 8 message is dispatched to the parser,
and a conditional (even-driven) production may be triggered to perform a
graph transformation. The positions and styles of objects are adjusted ac-
cording to the spatial specifications in the grammar. During the process of
graph transformation, some objects may collectively construct a composite
object, which is treated as one entity whose position change in the later
layout process will not affect the spatial relationships among its internal
objects.

When defining grammar productions for graph layout where edges repre-
sent only geometric relations, we allow only one relation between any pair
of nodes. Such relationships can be efficiently handled by the original
RGG formalisms. The graph grammar formalism with spatial specification
mechanisms is sufficiently expressive in specifying multiple connectivity
and complex presentation structures.

The system implementation is baged on a visual language generation
framework, The framework is essentially a meta-tool for automatic genera-
tion of visual specification tools (Zhang et al. 2001a), with which different
multimedia authoring and presentation languages can be automatically
generated according to varied requirements specified through spatial graph
grammars. For the example in Section 4.3, we can specify original docu-
ment structure through syntax productions as shown in a snapshot of Fig.



80 Chapter 4 Multimedia Authoring and Presentation

4.20 (i.e. production avthoring module in Fig. 4.19, events are not used in
this example). The production without spatial specification is slightly dif-
ferent from the full version of Fig, 4.13, The meta-tool then automatically
generates the language environment with a graphical editor and a parser. A
user can then use the graphical editor to draw an application document
structure and provide desired texts and attributes, as illustrated in the snap-
shot in Fig. 4.21. When the compiler is triggered from the menu on top of
the editor, the resulting document structure is visualized (Fig. 4.22) and
WML document listed in Section 5.1 is generated.

Fig. 4.20. Specifying productions using Rule Generator



A
iddeduEcaa e dna

Fig. 4.22. Automatically translated document structure

4.6 Summary

The grammatical approach is promising in providing a powerful mecha-
nism to represent the layout structure graphically and to perform an online
validation and adaptation through an automatically generated parser. This
chapter has presented the concept of applying graph grammars to the trans-
formation of multimedia presentations to achieve automatic adaptation to



82 Chapter 4 Multimedia Authoring and Presentation

the change of media contents, different layout requirements and user inter-
actions. Such transformations usually involve location change, differential
scaling and semantic zooming. To graphically represent these three types
of changes, we have proposed the notation of grid nodes, and three rules:
location rule, zooming rule and distance rule. We use the spatial graph
grammar formalism to explicitly describe the syntax of Web application
layouts and transformation methods.

The graph transformation tool can be considered an authoring language
generator, i.e. a meta~tool, that can generate any authoring tool environ-
ment or re-generate a modified tool whenever needed. A multimedia au-
thor without any knowledge of graph grammars or design rules will he
able to use the generated authoring tool to make adaptive presentations by
drawing graphical structures. Syntax check and design validation are then
automatically performed by the authoring tool. A graph layout can be
transformed according to the defined grammar or run-time events such as a
user interaction.

As mentioned at the beginning of the chapter, the Synchronized Multime-
dia Integration Language (SMIL) (Bulterman and Rutledge 2004; W3C
2001) allows control over which media elements, and where and when the
media elements are to appear in a multimedia presentation. Though the
SMIL is flexible to support multiple alternative layouts, there are several
fundamental differences between the SMIL and our graph-grammar-based
approach. Firstly, rather than providing absolute layout positioning as in
the SMIL, a graph grammar defines the desirable layout adaptive to the ex-
isting layout or the user’s intention. Secondly, when a media element is de-
leted or inserted satisfying predefined structural constraints, an updated
representation can be automatically generated in the grammatical approach
through parsing but this is not possible with the SMIL. Thirdly, the posi-
tion of a media element in the SMIL is defined relative to the size of the
element’s parent geometry. The SGG cannot only define a representation
the same way through attributes and action codes, but also specify the
position of one element relative to another throngh graphical notations.

Cascading Style Sheets (CSS) (W3C 2004b) define how to display Web
documents, including specification of fonts, background, foreground, and
so on. They allow both the author and reader to provide rules that specify
various attributes of a Web document, Multiple style definitions will cas-
cade into one according to some conflict resolving rules. The layout
mechanism of both the C8S and SMIL works on a predefined specifica-
tion. Only through a transformation language, such as XSLT (W3C 1999),
may CSS and SMIL allow the layout mechanism to work conditionally on



4.7 Related Work 83

a previous layout or a spatial property. The graph grammar approach,
however, allows the new layout to be generated based on the previous lay-
out as well as on a specification.

4.7 Related Work

There have been a number of systems and approaches for the authoring
and presentation of multimedia systems (Prabhakaran 2000). Among
knowledge-based approaches, Comet (Feiner and McKeown 1993) and
WIP (Andre et al. 1993) employ some forms of rule-based mechanisms to
represent the graphical design knowledge. The rules conirol the search of
all possible solutions and determine an appropriate solution. One of the
most challenging issues in these systems is how to specify the control
mechanism.

Vazirgiannis ¢f al. (1999) proposed a spatio-temporal composition model,
and indexing schemes for efficient querying in such a spatio-temporal co-
ordinate system (Vazirgiannis ef gl. 1998). The model translates spatial
and temporal relationships among multimedia objects into minimal and
uniform expressions, and allows authors to specify an object’s spatial fea-
tures either as absolute coordinates or in relation to other objects. Algo-
rithms and tools have been developed to transform relative data into abso-
lute coordinates, and to verify the integrity of spatial and temporal
relationships. The model does not address its adaptability to the changing
space and layout requirements. Based on the nested context model (NCM)
(Casanova et al. 1991), HyperProp (Soares et al. 2000) emphasizes the im-
portance of document logical structuring. It supports event-based spatial
synchronization and behavior specification, but offers no explicit
specification of document layout and spatial adaptation. Temporal aspects
are also investigated by Guan et al. (1998) in their model of Distributed
Object Composition Petri Net (DOCPN) that facilitates the
synchronization of multimedia presentation in a distributed computing en-

Erg%hia interface, the attributes of elements are defined in terms of
other elements and atiributes of the viewing enviropment: information
links indicate a (semantic) connection between two pieces of information,
which can belong to different information domains, an information view is
a collection of correlated objects displayed together to help the user to per-
form some activities on the objects (Bjork et al. 2000). Interactivity allows
the display to be dynamically adapted to the user’s requirement. Borning
et al. (2000) present a system architecture in which both the author and the



84 Chapter 4 Multimedia Authoring and Presentation

viewer can impose page layout constraints, The final appearance of a Web
page is thus the result of negotiation between the author and the viewer.
Marriott ef al. (2002) extends Scalable Vector Graphics (SVG) with con-
straint-based specification. Such an extension supports client-side adapta-
tion of documents to different viewing conditions. These approaches do
not offer visual specifications and their layout solutions rely on constraint
solvers.

In dynamic authoring, “authoring™ refers to creating the content for any
kind of presentation or document (Myers 1998). Dynamic authoring advo-
cates that capture-based systems should support flexible hypertext struc-
tures generated by linking through interactive operations (Pimental et al.
2000). Some user interface toolkits uses the approach of recognition and
mediation by constructing a library of reusable error correction, or media-
tion, that can provide structured support for resolving ambiguity at the in-
put event level (Mankoff et al. 2000),

The work presented in this chapter was influenced by that of Weitzman
and Wittenburg (1994). Weitzman and Wittenburg (1998) applied a graph
grammar formalism — Relation Grammar, to the antomatic presentation of
multimedia documents. The grammar governs the structure of the docu-
ment. One or more parsing trees, each of which represents an independent
presentation, are derived through a parser. Then, a syntax-directed transla-
tion is made on the tree. The final layout is created by a constraint solver
following the translation. In this approach, relational grammar functions as
g mapping from a representation of one style of multimedia documents to
the forms that specify how to realize the media objects. Inspired by the
work of Weitzman and Wittenburg, Cruz and Lucas (1997) developed a
visual querying and presentation system called Delannay™™, but grammars
are not used in this system (Cruz et al. 1997).

Another area of research is graph drawing (Di Battista et al. 1999). Six ef
al. (2000} proposed post-processing techniques (after some major graph
layout process), called refinement, for effective graph drawing. The tech-
niques can significantly improve the quality of orthogonal drawings by re-
ducing a graph’s area, bends, crossings, and total edge length (Di Battista
et al. 1999). In a graphical layout, maintaining a consistent view by auto-
matically beautifying the display is desirable (Minas and Vichstacdt 1993).
This chapter discussed a grammatical approach rather than an algorithmic
approach to the graph layout problems addressed by Six ef af (2000).
Zhang et al, (2002} presented an approach to combining the RGG formal-
ism with constraint rules to support automatic layout of orthogonal graphs.



4.7 Related Work 85

Research has been done in the graph grammar support for Web informa-
tion transformations. To support automatic layout of flowcharts, recently
Zhang et al. (2001¢) presents a visual approach to XML document design
and transformation, which uses RGGs (Zhang et al. 2001b) to define the
XML syntax and to specify the transformation between different XML
formats, The details will be covered in the next chapter,



Chapter 5 Data Interoperation

5.1 Introduction

As more rescarch disciplines and social sectors are becoming computer-
ized, an increasing amount of observational data and documentation are
digitized. To support interchange of these digital materials, encoding stan-
dards such as XML (eXtended Markup Language) (W3C 2004a) have
been proposed for digital document markup. A document structure is real-
ized by a set of element tags that can be used to delimit data items in a
document of the specific domain, If all the delimiting tags are properly
placed in a document, the document is said to be well-formed. However,
whether an XML document is valid is determined by the Document Type
Definition (DTD), a formal grammar for specifying the structure and per-
missible values of XML documents. The content of the document elements
and their markups can be specified and validated by a schema language,
such as the XML Schema (Thompson et al. 2000), RELAX (Makoto
2000), or SOX (Davidson 1999). The tag set of a specific domain is called
the “vocabulary” of that domain. People of the same domain could use the
same basic syntax, parsers, and assisting tools of the vocabulary. This
opens a way for different types of document structures to be created to fa-
cilitate communications for various professional domains. Digital data is
thus not only represented but also defined in different languages. To reuse
and exchange digital information, two levels of information translation
need to be addressed, i.e. data translation for data instances of different
formats, and schema translation between different schemas.

A naive way to translate data between different formats is writing a spe-
cific translator for each pair of formats. Writing such a program is typi-
cally a non-trivial task, and is often complicated by the manipulation of
data sources (Milo and Zohar 1998). The extensible styling language
(XSL, www.w3,0org/TR/2003/WD-xs111-20031217/) is proposed precisely
for translating from one XML representation to another as well as for styl-
ing. XSL specifies and supports the transformation of an input document



88  Chapter 5 Data Interoperation

to another structure, and describes how to present transformed information.
XSL specifications are, however, hard to express intuitively in a linear tex-
tual form even though the structure of a XML vocabulary is essentially a
tree structure. Transformations using XSL must be created manually on a
case-by-case basis. Furthermore, writing an effective XSL code requires
some degree of programming skills and good understanding of XML’s
working pringiple. Therefore, the current XML technology has limited user
population. A more general framework can be based on a common data
model (CDM) (Sheth and Larson 1990) to which the source/target data is
mapped, and a common translation language that enables the specification
and customization of the translation task. This would facilitate new transla-
tions, but still require considerable programming effort whenever a new
translation is to be defined (Abiteboul et al, 1997).

On the other hand, meta-mode! based techniques (Atzeni and Torlone
1995; Bowers and Delcambre 2002; Torlone and Atzeni 2001) concentrate
on both data and schema translation. A meta-model is a higher-level ab-
straction of data representation than models. Meta-model based approaches
provide a uniform representation for various levels of abstractions and en-
able data and schema translation declaratively, However, most of the exist-
ing approaches are based on textual languages, which are not as intuitive
as graph based techniques.

It is natural to represent the structure of any digital artifact and associated
schema graphically so that specifications and translations can be per-
formed intuitively. Aiming at providing user-friendly means for people of
various communities to use and exchange digital artifacts, we explore the
power of graphical visualization and automatic language generation, with a
sound underlying theory, The generated language environments can auto-
matically verify the syntactical structure of any constructed digital artifacts
and, when translation specifications are provided, automatically tranglate a
source artifact expressed in one encoding language or schema to its
equivalent in another language or schema,

In the remaining part of the chapter, Section 5.2 will first present a vision
of an interoperable framework based on multi-level abstractions of digital
artifacts. Section 5,3 focuses a real document to show the interoperation at
the instance level by translating it into a different format. Section 5.4 pre-
sents both model and schema levels of specifications using graph gram-
mars, followed by the implementations of model management operators in
Section 5.5. Section 5.6 finally summarizes the chapter,



5.2 A Hierarchical Interoperable Framework 89

5.2 A Hierarchical Interoperable Framework

To support full interoperability across heterogencous platforms, vocabular-
ies, and representation schemas, we propose a hierarchical interoperable
framework for not only digital information interchange but also for inter-
operation of information across different disciplines,

We consider four levels of abstraction: meta~-models, models, schemas,
and data instances, as illustrated in Fig. 5.1. At the bottom level, instances
contain concrete digital data, such as NCBI XML and HTML documents.
At the second level, a schema defines the structure of instances. Different
schemas are defined by different formalisms, called models at the third
level. On top of these three levels, we use a metg-model to define multiple
data models, using the basic abstractions for defining models. Each level
of the architecture can be viewed as an instantiation of the level above.
More specifically, models are particular instantiations of the abstractions
defined by a higher-level model, i.e. meta-model, schemas are instantia-
tions of a model, and instance-level data are instantiations of a schema.
This means that there is a general relationship between any two consecu-
tive levels: a level of information can be specified and encoded by its up-
per level in the form of an encoding language (for example, XML docu-
ments specified by DTDs or XML Schemas). The lower the level of
abstraction, the more concrete and easier it is to comprehend. In the
following, we will explain an approach in details at the levels of instance,
schema, and model,

Meta-Model |

Encoding &
franslation
specification

Fig. 5.1, Four levels of abstraction

The presented approach at the instance (data/documents), schema (lan-
guage rules), and model (meta) levels will serve two purposes: supporting
graphical construction of new documents and automatic generation of
documents upon validation; and supporting automatic translation of exist-
ing documents from one encoding format to another.



90  Chapter 5 Data Interoperation

Using the RGG as a meta-model, Fig. 5.2 shows an example of hierarchi-
cal abstraction levels of meta-model, model, schema, and instance data,
together with their correspondences to the formalisms in the RGG. At the
top level, nodes and edges in the RGG represent meta~elements and rela-
tionships respectively. At any of the lower levels, a node denotes an ele-
ment of a model, a schema or an instance, Labeled with different names,
nodes have different semantics in different contexts and levels of abstrae-
tion, e.g. an element of Schema, a PCDATA of DTD, or a tag of a docu-
ment instance. An edge defines a relationship between two nodes, such as
clement-element relationship and element-attribute relationship. Each
RGG production denotes relationships among elements, A whole set of
productions consisting of meta-elements defines a model, which in turn de-
fines a schema with elements. A schema consisting of tag names defines
an instance. As a meta-model, the RGG enables users to define a model as
a RGQG, i.e. a set of graph transformation productions. A specific schema is
defined by a RGG, as a host graph of the RGG at the model level in terms
of primitives. A digital document is denoted by a document tree of the
RGG from the schema level.

The RGG
formalism
A RGG defined
by meta-primitives

wwwwwwwwwwww

A RGG defined
by primitives
] ¥
BSML EMI. XML, Instance Data | Document trees
doguments documents doguments H

Fig. 5.2. Hierarchical levels of abstraction of data representation

Fig. 5.3 shows the system architecture, which consists of three major mod-
ules, the visual object generator (VOG), the rule generator, and the visual
modeling environment (VME), which is automatically generated. In the
following, the term primitive refers 10 a component of a model, and the
term meta-primitive refers to a component of a meta-model.

VOG is used to define meta-primitives. It provides a generic approach for
users to introduce a nmew meta-primitive suitable for the meta-model
when a new model needs a special construet that has no counterpart in the
meta-model. This approach is considered by Atzeni and Torlone (1995) as



5.2 A Hierarchical Interoperable Framework 91

“agymptotically” complete in due to its support for generality and variety
of meta-models.

Visual Ol Automaticall
Gx:mx?:m Eﬁ Y

¥,
YL User defines

Fig. 5.3. Architecture of the hierarchical framework

The rule generator is a visual environment for users to define graph trans-
formation rules. With user-defined meta-primitives or primitives, a user
may construct a graph grammar to define a model or a schema according
to different types of model/schema components. Supplied with user-
defined rules, the rule generator compiles and automatically generates a
visual modeling environment (VME).

Each VME consists of a graph editor and a parser for the pre-defined graph
grammar, based on which the VME is generated. The graph editor pro-
vides users with guidance on how to draw a host graph to represent a
schema (VMEI! in Fig. 5.3) or a data instance (VME2}, and prompts errors
whenever the syntax is violated. It is also able to perform syntax-directed
computations, specified with individual transformation rules.

The above hierarchical framework allows users to perform the following
steps to specify and transform digital artifacts:



92 Chapter 5 Data Interoperation

1. use VOG to define meta-primitives that are able to capture the main
primitives adopted by different schema languages describing strue-
tured data (XML documents in particular) for digital archiving or in-
terchange;

2. use these primitives to define a model or a schema, which is effec-
tively a specific RGG, enabling automatic generation of VME
(VME! or VME2 depending on the level of abstraction); and

3. further define, decompose or re-structure schemas and transformation
rules graphically within the generated VMEI to make model primi-
tives, and then return to Step 2; or define source data instances
graphically within the generated VME2 and automatically apply the
rules.

As shown in Fig. 5.3, Step 2 and the first half of Step 3 could form an in-
finity loop, which simulates the recursive definition in the real world. For
example, the XML Schema is used to define XML documents, while it is
an XML document itself, i.e. schema is an instance of its own. Detailed
visual model management operators and their implementations in RGGs
for schema interoperation can found in Song et al. (2004a; 2004b) and
Song (2006},

Doc construction} {* Graphical
Do translation Editor
——————-

Document
Tree

Documant
{format 2)

Fig. 5.4. Meta-tool approach to specification and translation at the document level

5.3 Interoperation at Instance Level

As illustrated in Fig. 5.4, a document author can use the graphical docu-
ment editor to construct a document of the desired structure by drawing a
document graph (an XML document structure is essentially a tree). Or if a
document already exists, it could be converted into a graphical representa-
tion by an XML parser and Java JTree. The document tree, either drawn or
generated from an existing document, is graphically parsed and executed



5.3 Interoperation at Instance Level 93

based on the graph transformation theory described in Chapter 2, so that
the document structure is validated and textual version generated. If
needed, the document ¢can be translated into a different vocabulary.

The underlying mechanism supporting the interoperability at multiple lev-
els is a graphical encoding language generation toolset, adapted from the
visual language generation environment, VisPro, to be discussed in Chap-
ter 8. The toolset consists of a visual object tool, a visual rule tool, and a
language-generation engine. A person in charge of data integration (called
data integrator) can use the visual object tool to define the visual notations
for nodes (typically representing tags) and links (parent-child relation-
ships) and provide atfribute types of the nodes. The visual rule tool inherits
the visual notations defined in the visual object tool, so that rules can be
congtructed using nodes and links. The data integrator can then use the
visual production tool to define the XML language vocabularies and their
relationships, and specify translation rules for a target XML langnage. Ac-
cording to the specified rules, the language-generation engine could auto-
matically generate a graph parser/transformer and a graphical document
editor. A scientist (information provider) would be able to use the gener-
ated tools to create formatted data without the need to know the formatting
language. In summary, the major advantages of this approach are the fol-
lowing:

s The graphical representation of digital information structures and the
transformation process is easier to comprehend than the textoal form, ag
it could reflect one’s mental image of the structure of a digital artifact
(e.g. a document structure),

» Automatically generated by a visual language generator, the graphical
editor and translation tool can be rapidly updated upon an information
provider’s needs. The generated graphical editor can perform syntax-
directed computations and syntactic checking of any constructed digital
artifact, and if so desired, automatic translation to a different vocabu-
lary and format,

s Separation of concerns of the design and construction of digital artifacts
using XML-based languages, so that only a small proportion of special-
ists (as data integrators) would need to understand the encoding stan-
dard and languages while the large majority of scientists (as informa-
tion providers) need not concern about detailed encoding formats.

In the following we go through a detailed example to demonstrate the ideas
of graphical rﬂmﬁanmnm and tmnsfmmamn af drgttal amfacts through a




94 Chapter 5 Data Interoperation

5.3.1 Source and Target Documents

The example document in both NCBI XML and BSML representations

is dcwnluadsd from the Web site
, convbio/db/NCBI2ZBSML htrol. To save the space,

we have shortened the document by removing many tag entries that have

the same structures and replacing such entries with simple comments as

shown in the following NCBI XML representation.

<Txri version="1.0"7>

<l-- <IDOCTYPE Seg-entry PUBLIC "//NCBI/NCB| Seqset/EN"

“http:/fwww.ncbi.nih.gov/did/NCBI_Seqgset.dtd"> >

<Seqg-eniry>

<Seq-entry_seb>
<Bioseq-set>

<Seqdesc_comment>[1] suggests ......</Seqdesc_comment>
<iSeqdesc>
<Seqdesc>
<Seqdesc_update-date>
<Date>

<Date_std>
<Date~-std>
«Date-std_year>1895</Date-std_year>
<Diate-std_month>1</Date-std_month>
<Date-std_day>6</Date-std_day>
=/Date-std>
</Drate_std>

<{Data>
«fSeqdesc_update-date>
<ISeqdesc>
<Segdesc>..inc. source, create date, and pub ..</Seqdesc>
<
</Bioseq-set_descr>

<15aq—entry>

NCBI (National Center for Biotechnology Information) has previously
been using a language called dbstract Syntax Notation I (ASN.1) for de-
scribing and exchanging information, in a similar fashion as using XML-
based languages. NCBI ASN.1 support modular specification by allowing
information sharing and reuse. This means that a single tag could mean
two different things in different contexts. It also allows the same name
used across different structures, while XML requires all tag names (non-
attributes) to be unique across the DTD, Due to these different language
requirements, an NCBI XML document directly translated from ASN.1 is



5.3 Interoperation at Instance Level 95

inevitably verbose, with extensive tags, that can be observed in the above
document. Fig. 5.5 shows a screen dump of the prototype called Biotrans
when the input NCBI XML document was converted to a JTree,

Fig. 5.5. Input NCBI XML document converted to JTree

Assume that we wish to translate any documents written in NCBI XML to
their BSML representation, which will be much more concise. For the
above digital document, its BSML equivalent is as follows

<?xmi version="1.0" encoding="UTF-8"7>
<Bami>
<Definitions>
<Sequences>
<Sequence title="HUMINSR" ic-acckey="M10051" id="G186438" comment="Human
instﬁg m;':f“gm mRNA, complete cds.” representation="raw” molecule="ma" length="4723"
strandg~=
<Attribute name="version” content="M10051.1"7>
<Attribute name="comment® content="[1] suggests that ....... "
<Aftribute name="update-date" conteni="1985 1 6"/>
-..Aftributes for "create-date”, "source”, "pub”, and "keywords”......
</Sequence>
<{Sequences>
</Definitions>
={Bsmb>



96 Chapter 5 Data Interoperation

We first translate the textual NCBI XML document according to its tag
structure into a graphical form (essentially a trec) whose syntax is svitable
for grammar interpretation. Although the example is for translating from
NCBI XML to BSML, the principle that we will be demonstrating equally
applies to the translation between any two XML-based documents, and to
more complex and varying document structures,

5.3.2 Specifying Structures and Translation Rules

We need to devise a formal grammar (i.e. “Rules” as shown in Fig. 5.4) for
the underlying XMI-based language that is able to understand and inter-
pret any source documents written in the language (e.g. NCBI XML). To
support the automatic transformation of the source document to a target
document written in another XML-based language (e.g. BSML), we also
need a transformation mechanism. Since all documents are represented
graphically as trees, it would be most natural to use a graph parser and a
graph transformer to perform the above two tasks. As the sound foundation
of visual programming languages, graph grammars would serve well the
desired graph parsing and transformation (Rozenberg 1997).

We adapt the RGG formalism to specify XML-based document structure
and transformation. As shown in the BSML listing in Section 5.3.1, there
are two types of attributes in this target language: the ones enclosed in a
tag (e.g. “update-date” and “comments™) and the ones represented as tags
themselves (e.g. “Attribute”™). To distinguish these two types of attributes
in the final target document, we represent the former type as the nodes
connected directly to the super-vertex of the tag node, and use a vertex X
to designate the connecting point of all the latter type of child tags.

The following simple example explains the graph transformation approach.
Fig. 5.6 illustrates three productions specifying the NCBI XML structure.
They define “Seq-descr™ as the parent tag of “Seqdese” Fig. 5.6(a), and
two child tags of “Seqgdesc”, one for “update-date” in Fig. 5.6(b) and the
other for “comment” in Fig. 5.6(c).

Fig. 5.7 demonstrates the transformation process of a sub-graph involving
the use of the above three productions. In Fig. 5.7(a), the sub-graph iso-
morphic to the right graph of Production <2> and that isomorphic to the
right graph of Production <3> are redexes, enclosed in two dashed boxes.
After applying Productions <2> and <3> to the example sub-graph, the
pewly transformed sub-graph is depicted in Fig. 5.7(b). Vertex C in the
right graph of Production <1> (Fig. 5.6) is marked by a unique number,



5.3 Interoperation at Instance Level 97

indicating that its corresponding isomorphic vertex in the new sub-graph
can be connected fo multiple nodes, so that Production <1> can be applied
separately to the child tags “Seqdesc” of “Seq-deser”. The first application
of Production <1> results in the new sub-graph in Fig, 5.7(c) and the sec-
ond application generates the final sub-graph with two “Attributes™ con-
nected to “Seq-descr” as in Fig. 5.7(d). Consider the step in Fig. 5.7(b), the
transformation deletes the redex in the dotted box that matches the right
graph of Production <1>, while keeping the vertices, i.e. C and X, that are
marked in the production. Then the left graph of Production <1> is em-
bedded into the host graph, as shown in Fig. 5.7(c), with the “Seq-descr”
node connecting to an “Attribute” node via vertex X.

n ": ’ fo e es
{c) Production <3> for “comment™
Fig. 5.6. Three productions to explain graph transformation

Fig. 5.7. Demonstration of graph transformation process

The syntax of NCBI XML is defined by the sub-graphs without dotted
lines; and the mechanism for translating the NCBI XML syntax to BSML
is defined by the sub-graphs including dotted lines. We will refer to the
former rules as the grammar, and the latter, extended from the grammar, as
the translator. The grammar serves the validation and generation of docu-



98  Chapter 5 Data Interoperation

ments of the defined NCBI XML structure, while the translator allows
documents of the defined structure to be validated and also translated into
documents of the BSML structure,

A production may contain elements that serve as instructions for creating
result tree fragment. The instructions are executed when the production is
applied. For example, to convert the “update-date” format from three sepa-
rate strings for year, month, and date to a single string format as required
by BSML, we will attach the following action code to Production <2=in
Fig. 5.6:

Action(AAMGraph g) {
Date.value = Date-std_year + Date-std_manth + Date-std_date;

}
apart from other operations that may be required for this particular produc-
tion.

Fig. 5.8 is a screen dump of Biotrans after the transformation rules were
entered and defined. Fig 5.9 shows the output result after translation.

Fig. 5.8. Transformation rules defined in Biotrans



5.3 Interoperation at Instance Level 99

Fig. 5.9. Qutput display of Biotrans after automatic translation

5.3.3 Automatic Validation and Translation

We now discuss how graph transformation and associated syntax-directed
computations using the RGG formalism can be performed to achieve the
validation and, if desired, text processing of any input XML document. We
define the productions by taking advantage of the tree structure of any
XML-based document so that the document can be parsed (transformed)
efficiently from tree leaves to the root.

The parsing algorithm for XML-based docurments is different from that of
the RGG, because matching a right graph to a host graph is a tree-to-tree
match rather than graph-to-graph match in the RGG. The tree-to-tree
match can be performed much faster when using appropriate data structure
and algorithm. The parsing process proceeds in two steps:

» Search in the host graph for a redex of the right graph;
s Embed a copy of the left graph (i.e. the root of the right graph)} into
the host graph by replacing the redex.



106 Chapter 5 Data Interoperation

Repeat Steps | and 2 until the host graph is empty or no more matches for
any productions,

Different from the process of validation, in which the parser finally pre-
sents a parsing result, i.e. valid or not, the translation process produces a
new graph from the input host graph according to the translator produe-
tions. Slightly different and extended from the original RGG parser, the
translator mechanism performs the embedding process in a copy of host
graph and adjusts the copy to a new graph as the result.

For example, by applying the grammar (excluding the sub-graphs with the
dotted lines) repeatedly to a specific diagram, we can determine whether
the diagram represents a valid NCBI XML document. Similarly, by re-
peatedly applying the tramslator (including all the sub-graphs in dotted
lines), a NCBI XML document can be transformed into a more concise
BSML document. The productions may be applied in different orders but
will produce the same result. To take advantage of the tree structure of any
XML documents, we define the production rules in such a way that effi-
cient parsing and translation can be performed from tree leaves to the root.
The extended part (from the grammar) in the translator would not affect
the transformation efficiency since its sub-graphs could all be regarded as
terminals.

5.4 Model and Schema Specifications

This section presents the model and schema specifications, and shows the
basic process of data/model management by identifying meta-primitives of
a meta-model, defining 3 model, constructing a schema, and drawing an
instance.

5.4.1 Identifying Meta Primitives

All the constructs used in most known schema models and formalisms for
expressing digital data fall into a rather limited set of categories. Therefore
a meta-model can be defined in terms of a basic set of meta-primitives,
corresponding to these categories.

In considering the above fact, our example meta-model includes the meta-
primitives limited to the following: object type, ordered sequence, unor-
dered sequence, choice, cardinality, key, and foreign key, Obviously the



5.4 Model and Schema Specifications 101

meta-primitives are not complete for defining all the types of data models,
so the names and number of nodes may change when the meta-model
needs to be extended to subsume newly infroduced models, To ease the
process of extending the meta-model, we can provide the VOG for users to
specify new meta-primitives. A relationship befween meta-primitives is
defined by an edge, whose semantics is determined by the nodes it con-
nects. The set of example meta-primitives includes eight types of nodes
(meta-primitives) as shown in Fig. 5.10,

Fig. 5.10, Meta primitives of the meta-model

5.4.2 Defining a Model

As stated in Section 5.2, a model that can be used to specify a schema
{scheme model for short} is a specification for the corresponding schema.
This section uses the meta-primitives in Fig. 5.10 to define an example
model for a subset of the XML schemas, which includes most of XML
Schemas and DTDs. In addition, the rule generator provides a convenient
way for users to define and add more rules to specify a complete set of
schemas for the structure of XML documents. Fig. 5.11 shows the model
defined by a graph grammar, which consists of 14 rules, and the ith pro-
duction is marked with <i>,



102 Chapter 5 Data Interoperation

Fig. 5.11, A subset of schemas defined by the meta-model

The mode!l defines relationships among Elements and Afiributes etc.
Rules <1> and <35> declare that an element can enclose arbitrary number
of other Elements and Aftributes respectively. Rule <2> defines that an
Element may have a Cardinality constraint. Rules <4> and <8> define
that an Element may have an arbitrary number of Keys or Foreign Keys.
Rules <7>, <11>, and <14> define that an Element may have a Se-
quence, a Sequence may include any number of Elements, and a Se-
quence may have a Cardinality constraint, respectively. Rules <10>,
<12>, and <13> define the same relationships among Elements, Cardi-
nalities, and Choices. Rules <3>, <6>, and <9> define the relationships
among Elements, Cardinalities, and All.

5.4.3 Constructing a Schema

After the mle generator parses the rules that define the model, a VME is
automatically generated. Using the VME, the user draws and customizes a
host graph, i.e. an instance of the model, to define a schema. Then with the
user’s intervention, the VME transforms the host graph into a set of rules
suitable for the system to define the structure of data instances. During the
procedure users could interact with the system to adjust the schema, ie. the
procedure is semi-aptomatic. To construct a schema using VME, users
should follow the three steps described in the following three subsections.



5.4 Model and Schema Specifications 103

5.4.4 Drawing an Instance Data

Under the syntax guidance of VME, the user draws a host graph in the
generated VME to represent the structure of the expected schema. Fig.
5.12 shows an example of the host graph conforming to the rules described
in Fig. 5.11. The host graph defines the structure of the schema, in which
the name of each node denotes the type of the node, such as Element and
Sequence. The host graph does not however define the instance of the
type, such as the name of an element or range of the cardinality, which is
domain specific. The framework cannot determine the value of each node
automatically. Therefore the host graph does not completely define the
structure of a document, and rest of the job has to be tackled by the user,
iL.e. to customize the host graph in the VME.

Fig. 5.12, An example schema conforming to the rules in Fig. 5.11

5.4.5 Customizing the Host Graph

To customize the host graph means to specify the parameters of each node
according to the domain requirement, such as the name of an element, the
range of the cardinality, and so on. This could be done very easily with the
generated VME by editing each node. Fig. 5.13 shows the user-defined
domain specific schema based on the example in Fig. 5.12. The name of
the node Sequence is the same as that in Fig. 5.12, but the meaning is dif-
ferent, the one in Fig. 5.12 defines the type of the node, while the Se-
quence in Fig. 5.13 represents the instance itself, The DTD defines a Se-
quencs using a comma “,” between every two elements.



104 Chapter 5 Data Interoperation

THLY
L]

Tl
| Ftal
[ LE] ]]\“%‘
ol | . .
epit Hﬁswm D T Facld
adia R R B ks B sy k| G

iy = —

Figure & User-defined schema
sorrespoading to schems in Figure 7.

Fig, 5.13, User-defined schema corresponding to the schema in Fig. 5.12

5.4.6 Adapting the Rules

After being customized in the domain context, the host graph represents
the structure of a schema. From now on we refer to the host graph as
schema graph. Before the rule generator processes a schema graph, it
needs to be adapted because of the following.

1. Although we can simply make the schema graph a right graph of a
rule, we still need a left graph, because each rule of a graph grammar
consists of a right graph and a left graph.

2. As some nodes in the host graph carry structural semantics, they
should be converted to the corresponding notations in the RGG for
the parser o recognize,

3. The number of nodes in the right graph influences the performance of
the parsing process, whose time complexity is partially determined by
the maximum number of right graph as discussed in Chapter 2. The
larger the right graph is, the more costly the parsing process is. So a
large schema graph should be broken into smaller ones to improve the
parsing performance while kept correctness,

4. In order to further construct rules for data translation based on the
schema, the schema graph needs to be decomposed.

The VME automatically adapts the schema according to the following
principles.



5.4 Model and Schema Specifications 105

» Remove those nodes that carry structural semantics, such as cardi-
nality and attribute, and add appropriate attributes to the nodes asso-
ciated with the removed nodes.

s Trim vertices of each super-vertex, ie. remove those vertices not
used in the schema, such as the vertex links to the cardinality node.

s Break any schema trees of more than three levels to smaller trees to
improve the parsing performance.

s For each sub-graph of the schema graph, add the left graph to con-
struct a rule.

The user then adapts the automatically generated rules in the rule genera-
tor. The rule generator could in turn parse the rules and generate a new
VME for the user to draw instance documents. Fig. 5.14 shows the result-
ing rules generated from the user-defined schema in Fig. 5.13. In the gen-
erated VME, the user could draw and parse host graphs, which are the in-
stances of the schema.

Fig. 5,14, Rules generated from user-defined schema in Fig. 5.13

5.4.7 Drawing an Instance

The VME generated by the rule generator from a schema graph enables
users to visually define any instance documents conforming to the schema.



106  Chapter 5 Data Interoperation

Fig. 5.15 illustrates an example document conforming to the schema rules
defined in Fig. 5.14. In the VME, a user can draw any host graph, which
defines the structure of an instance document and conforms to the rules
used to generate the VME, i.e, the schema. So far, the host graph does not
have concrete data except the structure, The framework cannot determine
what the user wants data to represent; therefore the user has to customize
the data instance in the structure.

[

E'.aﬁ M

Fig. 5.15, User-defined document structure corresponding to schema in Fig. 5.14

In the host graph, the name of each node is a markup in a markup lan-
guage, which denotes the data type of the node and could enclose an in-
stance value. For example, StName in Fig. 5.15 is of data type “string”,
and could have any string as a value, such as “Lawrence”, For simplicity,
Fig. 5.15 does not show the detailed value of each node. After the user in-
stantiates the structure, the document is completed.

Recall the process of constructing a schema, the process of drawing an in-
stance follows a uniform procedure except that the host graph of an in-
stance needs not to be adapted for further definition.

5.5 Model Management Operators

Comparing to data instances, models are far more complex to interoperate
as little help can be found in query languages. Model management systems
are proposed to ease the programming for model operations (Bernstein
2003). A model management system consists of a set of operators which
represent the generic operations on input models. As described by Bem-
stein (2003), the main model management operators are defined as follows:



5.5 Model Management Operators 107

¢ Match — takes two models as input and returns a mapping between
them.

* Compose — takes a mapping between models A and B and a map-
ping beiween models B and C, and returns a mapping between A and
C.

o  DIiff - takes a model A and mapping between A and some model B,
and returns the sub-model of A that does not participate in the map-
ping.

¢ ModelGen — takes a model A, and returns a new model B that ex-
presses A in a different representation (i.e. data model).

» Merge - takes two models A and B and a mapping between them,
and retuins the union C of A and B along with mappings between C
and A, apd C and B.

These operators are applied to models and mappings as a whole, rather
than to their individual elements. The operators are generic in the sense
that they can be utilized for different kinds of models and scenarios.

Consider a typical example of building a data warchouse (Bernstein 2003).
Given a mapping map; from a data source S, to a data warchouse Sy, we
wish to map a second source §; to Sy, where §; is similar to §; (Fig. 5.16).
First we call Match(S;, S;) to obtain a mapping map; between S; and S,
that shows which elements of §; are the same as those of §;. Second, we
call Compose(map;, map;) to obtain a mapping map; between S; and Sy,
which returns the mapping between Sy and the objects of 5zcorresponding
to the objects of §;. To map the remaining objects of §;to Sp, we call
Diff(S., map;) to find the sub-model S;of S;that is not mapped by map;to
Sw, and map,to identify the corresponding objects between S;and S5 We
can then call other operators to generate a warchouse schema for S; and
merge it into Sy. Comparing to programming the whole system for all the
individual interoperation requirements, the model management process re-
duces considerable programming effort by composing generic operators.

S, manp; Sw Given: 8, 8y, mapy, 8w
1.map: = Match(8,,8,)
-

2. map; = Compose(map,;,map;)
- Klmm 2 maps 3.<8;, map,> = Diff{8,, maps)

S, =Pt s,

Fig. 5.16. Using model management to help generate a data warehouse



108  Chapter 5 Data Interoperation

5.5.1 Hierarchical Operations

Various data models and mappings are specified by different syntaxes,
which are mostly defined in natural languages in spite of some formal at-
tempts.

The visual model management approach provides a formal visual represen-
tation of data models and mappings defined by the RGG as inputs of
model management operators. It exploits graph grammars in defining the
syntax of data models. The parser would detect any syntax violation of in-
put data models and mappings. The grammatical approach also sets a
foundation for defining various model management operators by graph
transformation. Inputs to an operator are viewed as a set of host graphs
compliant to the predefined abstract syntax,

Model management operators can be specified at two levels, i.e. specific
operator snd generalized operator. A specific operator is a low level de-
seription of an operator on a specific input, and presents users a concrete
image of the expected output and interface for tuning the result. A specific
operator is antomatically generated on specific inputs through a general-
ized operator that is at a high level abstraction, and can be applied to gen-
eral inputs. The generalized operator graphically describes the algorithm
used to transform the input to output of the operator, i.e. the algorithm is
performed through a set of graph transformation rules, Since most model
management operators require operations on mappings, i.e. resnlts of the
match operator, a generalized operator cannot produce perfect result with-
out human intervention. But at a high level of abstraction, a generalized
operator is hard to be adapted on specific inputs and is therefore necessary
to cooperate with a customizable specific operator.

The two-level hierarchy of operators defines two levels of system-user in-
teractions, i.e. design level and operation level. At the design level, experts
of model management and graph transformation describe the algorithm of
an operator by graph transformation rules, i.e. gencralized operator. At the
operation level, users, such as DBAs, perform metadata-intensive man-
agement tasks by adjusting and executing specific operators, which are
generated automatically from generalized operators (the process will be
described in details in Section 5.5.3).

Fig. 5.17 shows an overview of the visual model management system,
which embeds a set of predefined generalized operators. Users compose
the operators by scripts or command line to construct metadata applica-
tions. According to the generalized operator the system generates a set of
specific rules as an interface to accept user’s customization. During each



5.5 Model Management Qperators 109

step of execution, users may adjust the customizable specific operators to
obtain desired output rather than adjusting output directly which could be
error-prone, After specific operators are parsed, a visual environment is
generated, which produces final results of the operator.

Data Mappings
Models —
> Ciraphical
Operators
T
Lo ey i1
Cistomize S
P Lomen
R
Ovipat Data =) Auto Generate
Models and/or
Mappings —» Data Input

Fig. 5.17. Operation Architecture

The two-level hierarchy of graphical operators presents flexibility and
clear-cut between two types of model management users. Generalized op-
erators can be applied to host graph directly. Generalized operators operate
on the type of nodes, e.g. mapping element, reference element and so on.
Therefore, generalized operators define an overall transformation, i.e. any
elements with the same type have the same transformation action accord-
ing to the rules. However if some specific elements, such as a reference
element book, need to be changed, a gencralized operator cannot help. One
has to count on the specific operator. Since it is hard to draw a specific op-
erator for each host graph (or a set of host graphs), one can apply general-
ized operators to specific host graph to generate a specific operator, which
can be customized afierwards. The translation is totally different from the
original RGG translation, as it generates another set of rules.

5.5.2 Graphical Representation of Models and Mappings

A data model contains a set of objects and various relations between the
objects. An object could be an entity in ER models or an element in XML
schemas, and a relation could be an “is-a” or “has-a” relation. Each ob-
ject has an identity and type, and each relation has properties denoting its
semantics, such as the min and max cardinality.

We represent a data model, e.g. ER model, by a host graph in terms of a
directed node-edge diagram. A node represents an object, and an edge



119 Chapter 5 Data Interoperation

denotes a relation. A node has a name and a type corresponding to the ob-
ject the node represents. The attribute of an edge defines the relation be-
tween the two connected objects.

Graphs of a data model should be compliant to the syntax of that model.
For example, two entities of an ER model cannot be connected directly.
Such a syntax is defined by graph grammar rules. With these rules, one can
easily draw models under the syntax guidance of the RGG toolset.

A mapping, Map,s, defines how models A and B are related (Pottinger
and Bernstein 2003) as shown in Fig. 5.18. Many proposals use graphical
metaphors to represent schema mappings like in Rondo (Melnik et al.
2003) and Clio (Miller et al. 2001). These mappings are shown to the user
as sets of lines connecting the elements of two schemas. This kind of rep-
resentation is simple but not as powerful as SQL view (Madhavan and
Halevy 2003) or that of Bemstein (2003). SQL view is not a generic repre-
sentation for mappings among heterogeneous data sources, such as XML
schemas. On the other hand, mappings are structured instead of flat bi-
directional, and bhard to be described by simple two-way correspondences.
The mapping structure described by Bernstein (2003) is an appropriate
compromise, being generic yet powerful for describing mappings.

Miodel A Mapping Aand B Model B

Hay ¥
.
- -
fl PR

S

Fig. 5.18. A mapping represented in RGG

We represent mappings as special data models. A mapping has only one
relationship type, i.e. has-a relationship, and three element types, ie.
mapping element, reference element and helper element. A mapping ele-
ment specifies how two referenced models’ elements are related, such as
equality, or similarity, such as node Equal in Fig. 5.18. A reference ele-
ment serves a reference to the element of two corresponding models, such
as those nodes of Model A in Fig. 5.18. The relationship between a map-



5.5 Model Management Qperators 111

ping element and a reference element is denoted by a dashed line. A helper
element is a make up element to represent extra semantics of a mapping.
For example, Intros is a helper element indicating that Bio and Intro can
be composed together to form a detailed and official description of Author
as shown in Fig. 5.18.

The syntax of mappings is defined by a graph grammar in Fig. 5.19, which
includes five production rules, The first production shows that the initial
state of the mapping is a mapping clement, Production <2> shows that
each mapping element can be connected to and has the has-a relationship
with more than one mapping element since vertex F is marked. Produc-
tions <3> and <5> define the relationship between the helper and mapping
elements, i.e. they may have the has-a relationship in either direction. The
fact that a mapping element can have multiple reference elements is speci-
fied in Production <4>, and the relation between a mapping element and a
reference element is denoted by a dashed edge.

<Y iritial B
- Eloment
71
<= E <3 E
i o
Element | ° 1 Element | =
[l A [¥1
Mappng I—ﬁ
Element Element
[B1 [E]
< H'Eig-ﬁler
Element
venl =
Element |~ = 1
[rl
Mapping
Element
[E]

Fig. 5.19. Mapping as a model defined by a Graph Grammar

5.5.3 Implementing Operators by Graph Transformation

Model management operators take data models and mappings as input
and generate another set of data models and roappings as output, and are



112 Chapter 5 Data Interoperation

described by a set of graph transformation rules. This section illustrates the
graphical representation of two operators, Merge and ModelGen. The
same principle applies to other operators,

5.5.4 Merge Operator

Merge takes three inputs, i.e. model A, model B, and a mapping between
A and B, and returns the union model C of A and B along with mappings
between C and A, and between C and B (Bernstein 2003). The input of
merge is S = (4, B, Mg}, which consists of three graphs representing
model A, model B, and the mapping between A and B. After applying
merge to S, output T consists of five graphs, ie. T = (4, B, C, M;, M),
where A, B are copies of input graphs, C represents the output union
nuxdel, M, and M, represent mappings beiween C and A, and between C
and B,

The semantics of merge can be briefly described as follows: The output of
merge is a model that retains all non-duplicated information in A, B, and
Mapag; it collapses the redundant information declared by Mapag.

Fig, 5.20 shows a set of graph transformation rules for merging models A
and B as defined in Fig. 5.19. Each production rule shows what the result
of merge should be. Production <1> defines that root nodes of input mod-
els, Book and Ebook, will produce an output data model with a root node
Book, and two mappings. Productions <2> and <3> are similar to Produc-
tion <I>, and copy the referenced node to the output and set a correspon-
dence between the output and input models to form two output mappings.
Production <4> merges the structured mappings by defining a new struc-
ture in the output model with the nodes referenced by the mapping element
and constructing two mappings from elements in the input models to the
constructed elements in the output models. Production <5> shows the
transformation witli a helper element (Intros in this case), and is similar to
Production <4>, Productions <6> and <7> copy the input elements that
have no reference in the input mapping to the output and establish a map-
ping between the original element and the copy.

Comparing to an operator algorithm, the graph transformation rules intui-
tively and explicitly specify what the result should be, and therefore a user
with little donmain knowledge can manipulate the rules to meet the specific
requirements. For example, if one wants to use EBook rather than Book as
the root of the output data model, he/she can change the node Book in the
left graph of Production <1> to EBook.



5>

= TEF-IE - -
I

Fig. 5.20, Merge operator defined by graph transformation rules

5.5.5 ModelGen Operator

ModelGen takes a model A as input and returns a new model B based on
a mapping between A and B (Bernstein 2003). In the visual model man-
agement approach, ModelGen takes input § = (4, M,p), where A is a
model, Map is a mapping, and output is T = (B). ModelGen transforms
from input graph § to T by applying a set of transformation rules P, ie.
T=A(S, P).



114 Chapter 5 Data Interoperation

For the input (A, Mapag) in the example of Fig. 5.18, the ModelGen is
described by the graph transformation rules in Fig. 5.21. Productions <l>,
<2Z>, and <3> show that the result of a one-to-one correspondence is cop-
ied directly from the reference elements of model B in the mapping. In
Productions <4> and <5>, the reference elements in model A are mapped
to the elements in B via a complex structure of mapping elements or helper
elements. For example, Production <4> produces new elements by dupli-
cating reference elements of the mapping, e.g. LName and FName.

Fig. 5.21. ModelGen by graph transformation rules

ModelGen on the input (4, M) does not produce model B accurately. It
cannot produce element summary of the original model B, because the
input S (4, My has no such clement. To maintain a high fidelity of the
output model one can add summary to the left graph, so that the parser
will produce the element missing in the output model.

As shown above, two operators, Merge and ModelGen, are defined by
transformation rules on specific inputs. It is casy and feasible for users to
specify the specific transformation rules on small-scale inputs, but not for
large data models. We therefore should automate the process of defining
rules for specific inputs by exploiting traditional algorithms, or generaliz-
ing the specific graphical operators, as discussed in the following subsec-
tion.



5.5 Model Management Operators 115

5.5.6 Generalization of Operators

This subsection describes the concept of operator generalization by going
through the merge operator. Based on mappings, generalized graph trans-
formation rules visually describe the algorithms for the corresponding op-
erators at a level higher than specific operators. Ideally if we could define
all the detailed algorithms of model operators by graph transformation
rules, model management could be an automatic and visualized process.
Due to the ad hoc nature, however, generalized operators still need to be
customized for specific inputs, for example the ModelGen in Fig. 5.21
needs to add summary to Production <1> for an accurate output.

Therefore generalization aims at describing algorithms of operators by
graph transformation and when applied to a specific input, the parser gen-
erates the corresponding specific operators, which are customizable. The
approach shown in Fig. 5.17 could be fully interactive and also visualized.

e

Fig. 5.22. Generalized graph transformation rules for merge operator

For example, merge could be generalized as in Fig. 5.22, which defines
five transformation roles. Unlike the merge algorithm, the transformation
rules can be customized on the input. Generalized operators do not resolve



116  Chapter 5 Data Interoperation

conflicts, which are to be solved by specific operators. Production <1>
merges an elementary mapping, i.e. one to one correspondence as Produc-
tions <l>, <2>, and <3> in Fig, 5.20. The output consists of two mappings
and one data model together with input elements. In the middle of the left
graph of Production <1>, the reference element of the output model is a
copy of one of the mapped input elements, the element in model A in this
case. The remaining two output reference elements are copies of the corre-
sponding input elements. Two mapping elements on top are output map-
pings, which map the middle reference element to the left and right refer-
ence elements. Production <2>, together with Production <4>, merges the
structured mapping elements, such as the equal element of Production
<4> in Fig. 5.20. The merge is achieved by making the mapping element
and the related reference element a composite element and then extracting
the reference element to form the output clements in Production <4>,
Similarly Productions <3> and <5> transform the structured helper ele-
ments by composing them in <3> and then extracting in <5>.

When the rules are applied to a host graph, the parser matches the nodes in
the host graph to the nodes of the same type in the right graph. For exam-
ple equal in Fig. 5.18 is a mapping element of Fig. 5.22. Because the
rules are based on the graph grammar in Fig. 5.20, they can be applied to
any host graphs conforming to the grammar.

Similarly, the ModelGen operator in Fig. 5.22 can be generalized and the
generic model management visualized. But users cannot customize gener-
alized operators like they do with specific operators. As shown in Fig.
5.17, the two types of operators play complementary roles to provide a
vigual, generic, and customizable model management environment.

5.5.7 A Parsing Example

This section describes the transformation process of merging input data
models and mapping illustrated in Fig. 5.18. The corresponding merge
operator is defined in Fig. 5.20. The output includes models A and B (ie.
copies of input), output model C, and mappings Mapac and Mapgc.

The first redex found is that of Production <6> in Fig. 5.20, i.e. ISBN of
model A. The parser copies ISBN of the model and connects it to the
mapping element Equal. A redex of Production <7> is found in the second
step, which merges Summary element of model B.

Production <5> is applied in the third step, which merges mappings with
helper elements. The helper element Intros and two connected mapping



5.6 Summary 117

elements, Bio and Intro, are moved to the output model. Two mapping
elements in Mapac and Mapgc are connected to Bio and Intro respectively.
In the forth and fifth steps, the parser applies Productions <4> and <3> re-
spectively.

Due to the space limit, only the last step is shown in Fig, 5.23, when Pro-
duction <1> is applied. The mapping between Book and EBook is found
as a redex and replaced with two mappings. After the application of this
rule, the output model C and two mappings between C and A, B are finally
produced.

Fig. 5.23, The last step of the parsing process for merge operator

5.6 Summary

This chapter has presented a graphical methodology for specification and
interoperation based on the RGG formalism. Once the document structure
of an XML dialect and its conversion to an alternative dialect strueture are
specified through grammar rules and translation rules, a visual transforma-
tion environment with a graphical editor, a parser and a translator is auto-
matically generated. XML documents conforming to the former dialect can
then be graphically created using the graphical editor, and if desirable,
sutomatically translated into the target dialect. At the schema and meta-
model levels, interoperation can be achieved through high level model
management operators implemented using the RGG transformation rules.
Visual language generation mechanism, to be discussed in Chapter 8, helps
handling different levels of operators, i.e. from generalized operators to
specific operators, to gase the user's effort.



118 Chapter 5 Data Interoperation

5.7 Related Work

Using visnal programming and visual language approaches to work with
XML has mostly been focused on visual query languages, such as VQL
(Vadaparty et al, 1993), XML-GL (Ceri et al. 1999), and Xing (Erwig
2000). For example, Xing is a visual langnage for querying and transform-
ing XML data. It achieves XML transformation and restructuring using
some rules that combine the patterns of queries and results retumed by
gueries. It uses nested boxes to represent XML data such what each ele-
ment tag is written on top of a box while all the atiributes of the element
are enclosed in the box. Such representation is essentially textual, supple-
mented by hierarchical boxes surrounding the text.

On the other end of the spectrum, VRDL (Visual Repository Definition
Langnage) (Minas and Shklar 1996) aims at hamessing the massive
amount of data on the Web by imposing a logical structure visually and
encapsulating chunks of original information into metadata entities. Simi-~
lar to our approach, VRDL is generated by a visual language generator
{Minas and Viehstaedt 1993) and thus supports graphical and syntactic ed-
iting. The visual notation used in VRDL is based on and adapted from the
Nassi-Shneiderman diagram.

Graph based techniques, such as hyper-graph data model (HDM), and Te-
los (Mylopoulos et al. 1990}, construct schema transformation operators,
perform inter-model transformations, and define inter-model links in terms
of graph, The notations used by these techniques are defined in a natural
language, and thus the ability of automated analysis and transformation of
graph-based models is limited. Therefore most of the operations on these
data models have to be specified in textual languages, For example, HDM
requires considerable effort to specify the transformation rules and links in
an appropriative textual language, and Bowers and Delcambre used RDF
(Lassila and Swick 1999} to represent model-based information translation
{Bowers and Delcambre 2002).

Of the general textual approaches to the automatic translation of XML
documents, Xtra (Su et al. 2001) aims at automatic transformations be-
tween XML documents by discovering a sequence of transformation op-
erations from the source and target DTD trees. The operations are used to
generate an XSL script, which can then be applied to source XML docu-
ments to transform them to XML documents conforming to the target
DTD. The user needs to be familiar with the XML technology to be able
fo use the Xtra tool. A similar method is that of Leinonen (Kuikka
et al. 2002; Leinonen 2003) which offers semi-automatic transformation



5.7 Related Work 119

between two XML structures based on the input of both source and target
DTDs and user-provided element mappings. Other textual approaches in-
clude those used in ARTEMIS (Castano and Antonellis 1999} and Clio
(Yan et al. 2001), both based on relational schema mappings. Due to the
flat natare of relational schemas, such systems could not properly process
hierarchical XML schemas. Also based on database schemas, TransScm
(Milo and Zohar 1998) uses rules to match similar document components
for most common cases, and allows the user to customize the rules for
more complex cases, Other approaches include the use of declarative lan-
guages (Cluet et al. 1998) and wrappers (Chen and Jamil 2003; Shui and
Wong 2003). These approaches offer neither antomatic structure valida-
tion, nor means for visual representation and specification.

As a vispal programming environment built upon the Circus transforma-
tion language (Vion-Dury et al. 2002) for XML document transformation,
VXT (Pietriga et al. 2001) allows users to construct tree-maps to represent
nested document structures. Similar to the approach in this chapter, its
transformation is specified by a set of rules, but different in that VXT rules
are at the same level of abstraction as XSLT and relies on the transforma-
tion power of Circus (Vion-Dury et al. 2002} rather than graph grammars,
Additional notations are introduced for constructing the rules by linking
the tree elements, which would potentially clutter the display space.

Though model management is a relatively new research area, its promising
and exciting potential has attracted much attention and made significant
advances in several aspects since it was first proposed (Bernstein et al.
2000}, In the transformation perspective, according to Bézivin et al
(2003), model management may be considered the 3rd generation, with
text seripts like the awk Unix command being the first generation and tree
scripts like XSLT being the second.

Various systems for model management have been presented. Cupid
(Madhavan et al. 2001; Madhavan and Halevy 2003) and Clio (Miller et al.

2001) match two models and output the mapping between them, ie. per-
forming the match operator. Merge has been a hot spot in database re-
search area for a long time, Buneman ef gl. (1992) described a theoretical
foundation of merge. In the context of generic model management, there
are various implementations of the operator, such as Pottinger’s approach,
which presents the operator based on the BDK algorithm (Pottinger and
Bernstein 2003), and data integration project Clio (Miller et al. 2001) that
is based on a query language specific to databases or XML schemas. Most
of the approaches concentrate on parts of generic model management.



120 Chapter 5 Data Interoperation

Rondo (Melnik et al. 2003) is the first complete prototype of the generic
model management system, which defines the key conceptual structure of
medels, mappings, and selectors. Melnik et al presented an algorithm for
the merge operator as an example, and applied it to XML schemas and
SQL views, Rondo represents mapping between two data models by a set
of correspondences, rather than by a model. Comparing to the interactive
and customizable approach in this chapter, Rondo is like a black box to us-
ers and presents no intuitive interface for users to customize.

Model management is also combined with peer-to-peer computing tech-
nology (Bernstein et al. 2002) and further used as an infrastructure for fu-
ture Web data representation, notably the semantic Web (Halevy et al.
2003a). Piazza (Halevy et al. 2003b) offers a language for mediating be-
tween data sources over the semantic Web. Piazza describes mapping by
an adapted query language and has more sophisticated mechanism to re-
trieve complex data from RDF and XML documents. The appropriate
mapping language is derived from XQuery and is complicated for a Web
page designer to map some Web pages to others. Users or designers have
to resolve conflicts manually. The complex query language could poten-
tially hinder the deployment of the Piazza system,

Using graphs to represent and manage data models is not new, and there
are many proposals based on graph grammars. Rekers and Schiier (1997)
presented an ER data model specified by layered graph grammars. Schiirr
{1994) also proposed the Triple Graph Grammar to represent and support
the specification of interdependencies between graph-like data structures.
Different from the approach presented in this chapter, the TGG specifies
the translation from input graphs to output graphs in a generic fashion and
does not consider mappings between input graphs. We explicitly define the
relationships between input graphs that represent data models, and con-
struct graph transformation rules for each operator based on the mappings
such that the operators are customizable.

Jahnke and Zundorf (1998) presented varlet, a database reverse engineer-
ing environment based on triple graph grammars. The varlet environment
supports the analysis of legacy database systems, translation of any rela-
tional schema into a conceptual object-oriented schema. More recent work
of Wermelinger and Fiadeiro (2002) focuses on software architecture re-
configuration using an algebraic approach, i.e. category theory. Consis-
teney of model evolution based on real-time UML is further investigated
by Engels et al. (2002). These graph transformation based approaches ad-
dress specific aspects of model management.



Chapter 6 Software Architecture Design

6.1 Introduction

Software architecture and design (Shaw and Garlan 1995) are usually
modeled and represented by informal diagrams, such as architecture dia-
grams and UML diagrams. While these graphic notations are easy to un-
derstand and are convenient to use, they are not amendable to automated
verification and transformation. The developer has to rely on personal ex-
perience to discover errors and inconsistencies in the architecture/design
diagrams. She also has to manually transform an architecture/design dia-
gram while needed. These processes are tedious and error-prone. This
chapter presents an approach that abstracts UML class diagrams and archi-
tecture styles into graph grammars, These grammars enable a high level of
abstraction for the general organization of a class of software architectures,
and form a basis for various analysis and transformations. In this approach,
software verification is performed through a syntax analyzer. Architecture
transformation is achieved by applying predefined transformation rules. In
general, the presented approach facilitates the following aspects:

» Graphs are used to specify sofiware by distinguishing individual
components and their relationships. Using graph gramumars as design
policies, the presented approach provides a powerful mechanism for
syntactic checking and verification, which are not supported by most
current tools.

s In addition to software design and verification, the presented ap-
proach facilitates a high level of software reuse by supporting the
composition of design patterns, and uses graph rewriting techniques
in assisting the transformation of software architectures and in reus-
ing the existing products.

The rest of this chapter is organized as follows. Section 6.2 outlines the
approach. Section 6.3 illustrates how to verify software design using a
graph grammar. Section 6.4 demonstrates the support for the composition



122 Chapter 6 Software Architecture Design

of design patterns. Section 6.5 shows the mechanism for software architec-
ture transformation. Section 6.7 summarizes the chapter.

6.2 Designing Architectural Styles

Having introduced the Reserved Graph Grammar in Chapter 2, we explain
the definition from building blocks, i.e. components and connectors, to
high level specifications, i.e. architectural styles. An architectural style
specifies the constraints on configurations of architectural elements (Mehta
and Medvidovic 2003).

Architectural styles fall in two broad categories (Garlan and Allen 1994).
The idioms and patterns refer to global organizational structures, i.e. pipe-
filter style. The reference models include system organizations that pre-
scribe specific configurations of components and interactions for specific
application arecas. A common pattern can be easily communicated and un-
derstood among a broad group of people while a reference model can be
more efficient in a specific domain by enforcing domain-specific con-
straints. The following description illustrates the specification of a set of
common patterns guiding the composition of a real-time system, and a ref-
erence model can be prescribed following the same principle.

6.2.1 Components and Connectors

The building blocks of an architectural description language are: 1) com-
ponents, 2) connectors, and 3) architectural configurations (Medvidovic
and Taylor 2000). Components denote various units of computation, and
connectors model interactions among components. A configuration repre-
senting an architectural structure is specified by connecting components
and connectors. In the grammatical approach, nodes are used to represent
components, and edges mode] connectors between components (Kong et
al. 2006). A graph grammar “glues” various components and connectors
into a meaningful architecture.

As described in Chapter 2, a node in the RGG is organized in a 2-level
hierarchy. The name of 2 node denotes the type of a component, while
vertices are used to define ports! referring to the provided and required

! ADLs may differ in the terminology of ports. For example, an interface in UniCon (Shaw et al. 1995)
is & ployer.



6.2 Designing Architectural Styles 123

functionalities. Connectors wsed to model interactions among components
are specified in the same fashion as components (Medvidovic and Taylor
2000). Vertices in a connector node denote roles of communication proto-
cols.

6.2.2 Architectural Styles

Having a vocabulary of architectural elements, i.e. component and connec-
tor types, a graph gramamar specifies an architectural style, which denotes
constraints on configurations of architectural elements (Métayer 1998). A
graph grammar is made up of a set of productions, and each production il-
lustrates the composition of sub-systems from the right graph to the left
graph. All possible inter-connections between individual components need
to be defined in the graph grammar. Any legitimate connection can be de-
rived from a sequence of applications of grammar rules. Conversely, an
un-expected link signals a violation on the graph grammar. Therefore,
parsing a host graph representing an architecture can validate the structural
integrity. The parsing process is a sequence of R-applications, which is
modeled as recognize-select-execute as explained in Chapter 2. This proc-
ess is continued until no production can be applied. If the host graph is
eventually transformed into an initial graph, the parsing process is success-
ful and the host graph is considered to represent a valid architecture satis-
fying the structural requirements enforced by the graph grammar,

The pipe-filter style is made up of pipes and filters. A filter having a set of
input and output ports reads streams of data on its input and produces
streams of data on its output. A pipe having a source role and a sink one
transforms information from the output of one filter to the input of ancther
one. Building on pipe and filters, an architecture committing to the pipe-
filter style must respect some structural constraints, ez a source role
needs to attach to an output port and a sink role to an input port.

In order to investigate whether a user-defined architecture observes con-
figuration constraints of a style, a graphical representation of an architec-
ture friendly to end-users needs to be automatically transformed into a
node-edge diagram, suitable for the RGG graph transformation engine to
analyze the structural integrity. In general, a node in the RGG indicates a
component (3 connector) and the vertices within the node represent ports
(roles). For example, a pipe is represented by a node labeled Pipe, which
has two vertices named Sink and SRC denoting the sink and source
roles respectively (the vertices should be named with a clear meaning and
vertex labels within the same node are distinct from each other). In order



124  Chapter 6 Software Architecture Design

to denote a filter with an arbitrary number of ports, we represent a filter by
a graph instead of a single node as the following:

* A node labeled Filter with two vertices / and O represents the filter
component.

e Nodes labeled I Port with two vertices P and F indicate the input
ports within a filter component. An edge connecting the F vertex of
an [-Port node and an [ vertex of a Filter node indicates the belonging
relationship between an input port and a filter. The other vertex P at-
tached to the Sink vertex of a Pipe node represents a data flow,

» The output ports are processed in the same fashion as the input ports.

Fig. 6.1(a) shows an architecture of the pipe-filter style. According to the
above principle, a corresponding internal graphical representation used by
a RGG parser is automatically generated as shown in Fig. 6.1(b).

{a) An architecture of the ; T
pipe-filter style Port 1 Pory O Post
[P ——— - gum ilgmra

Fig. 6.1. Graphical representations of a software architecture

The necessary connectivity among components is stated through the right
graph of a production, i.e. the application condition, which a host graph
must fulfill. Application conditions, however, cannot express the condition
which cannot be present for a production to be applicable. Therefore, the
negative application condition (Ermel et al. 1999} is introduced. For ex-
ample, Production 1 in Fig. 6.2 uses the negative application condition,
expressed by a rectangle crossed by a line, to define the condition that an
initial graph is derived from a single component Filter without any other
component.



6.2 Designing Architectural Styles 125

Fig. 6.2 gives a grammatical specification prescribing a pipe-filter style. In
particular, Production 1 demonstrates that an initial graph denoted by 4 is
abstracted from a Filter node. Production 2 abstracts two filters into one
filter, Production 3 states a data flow between a pair of pipes.

The client-server style has two types of components, i.e. the server and the
client. The server is able to provide services to clients. A dispatcher being
a connector (represented by a node labeled Dis as shown in Fig. 6.3) serves
to dispatch requested services to appropriate clients. Fig. 6.3 presents the
rules constructing a class of architectures comumitting the client-server
style.

=<]> er

<3>

e e " ——————

o o - -

o o o o o - - - -

Fig. 6.3. A grammatical specification preseribing a server-client style



126  Chapter &6 Seftware Architecture Design

¥

) 4

<1 | Qe ]y

m;m t <>

................ !:

<2> Object | &

: = il '
mm ) N 1

Object | §

[EIMI ¢

¥

................ 3

<3 Object :

) L4

Ohject ¥

1

L]

¥

]

1

1

L

¥

¥

13

i

Fig. 6.4. A graph grammar defining the event-based style

Components in an event-based style, represented by Object nodes, interact
with each other through event broadeast, i.c. the ocourrence of an event
can invocate methods in components. The connector distributor takes an-
nounced events and transforms them into method invocations. Since an
Ohject can be associated to an arbitrary number of events and methods, we
represent an object through a graph in the same fashion as a filter. Fig. 6.4
illustrates a graph grammar defining the structural properties shared by ar-
chitectures within the event-based style.

6.3 Designing an Architecture

Supporting a set of general architectural styles, a graph transformation en-
gine within a generated visual language environment can validate user de-
fined architectures against architectural styles. The following section goes
through a toll gate example to explain the designing of a system using mul-
tiple general architectural styles.

6.3.1 Toll-Gates

In a road traffic pricing system, drivers of authorized vehicles are charged
at toll gates automatically. The tolls are placed at special lanes called green



6.3 Designing an Architecture 127

lames. A driver has to install a device (ealled an ezpay) inside histher vehi-
cle’s windshield in order to pass a green lane. The registration of an au-
thorized vehicle having an ezpay includes owner’s personal data (such s
name, date of birth, driver license number, bank account number and vehi-
cle registration number),

Each toll gate has a sensor that reads ezpay. The information read is stored
by the system and used to debit the respective accounts. When an author-
ized vehicle passes through a green lane, a green light is turned on, and the
amount being debited is displayed. If an unauthorized vehicle passes
through if, a vellow light is tumed on and a camera takes a photo of the
vehicle’s license plate.

6.3.2 Designing a Toll-gate system

Based on a set of general architectural style defined through graph gram-
mars, a visual architecting environment can be automatically generated. In
the architecting environment, users without any knowledge of graph
grammars can define software architectures by drawing graphs. The struc-
tural integrity of such graphs can be validated by a graph gramumar parser.
In the environment, users can design a system or sub-system by choosing
an appropriate style and customize components and connectors inherited
from a vocabulary within the style.

A toll-gate system is made up of a database system and several gates, The
database stores customs’ information, which can be updated and retrieved
upon requests coming from the gates. Such a communication model is im-
plemented as the sub-systeny, in Fig. 6.5(a) using a server-client style. The
node labeled DB inherited from the component type Server represents a
database, and nodes labeled Gate inherited from the type Client denote toll
gates. The node Dis represents a connector sending requests to the data-
base and dispatching replies to appropriate toll gates.

A toll gate needs to scan the identification of an arriving vehicle, The sub-
system, applies the event-based style to implement the interactions be-
tween toll gates and vehicles (The node Gare is a common component in
the sub-system; and sub-systems, and it is inherited from both the Client
type in the client-server style and the Object type in the event-based style).
In particular, the vertex named Arrive in the Car node is an event port in-
vocating the scanning operation denoted by the Scan vertex in the Gate
node.



128  Chapter 6 Seftware Architecture Design

Gate
Jiz] Camer m
@,} e AdminfOut,
@ = *au‘ght@
[Sen]
(b} The architecture of a gate

Fig. 6.5. An architecture of the Toll-gate system

We can further elaborate the design of the toll gate using a pipe-filter style
as shown in Fig. 6.5(b). Three components constructing a gate are inher-
ited from the filter type, and are denoted by nodes Admin, Camera and
Light representing an administrator, a camera and a signal light re-
spectively. Directed edges in the Fig. 6.5(b) denote pipes connecting dif-
ferent filters.

=
AdminfGi \@m

{a) An architecture
violating the pipe-
filter style

(b) Parsing the architecture

Fig. 6.6. Checking an architecture



6.4. UML Class Diagram Verification 129

Based on graph grammars specifying a set of architectural styles, users can
implement sub-systems with an appropriate style and incrementally glue
sub-systems into a complete architecture. The structural integrity of each
sub-system can be verified through the parser. For example, Fig. 6.6(a)
shows an architecture violating the pipe-filter style, which requires that at
most one pipe connects an output port to an input port between a pair of
filters. The violation can be detected by the RGG parser, If an nonmarked
vertex in the right graph of a production matches a vertex v in the redex of
a host graph, then all edges connecting to v have to be completely ingide
the redex. According to this above embedding rule, an isomorphic graph
{surrounded by a dotted rectangle in Fig, 6.6(b)) matching the right graph
of Production 3 in Fig. 6.2 is not a valid redex due to the dangling edge
{Rozenberg 1997) as shown in Fig. 6.6(b).

6.4. UML Class Diagram Verification

In this section, we first use an example to illnstrate how o represent a class
diagram using a RGG diagram. We then define a graph grammar for the
UML class diagram. A parser can verify some properties of the design. In
the next section, we show how this graph grammar can help visualizing
design pattern applications and compositions in their class diagrams.

6.4.1 Class Diagrams

Class diagram, one of the most popular diagrams in UML, visually models
the static structure of a system in term of classes and relationships between
classes (Booch et al. 1999). In order to verify the structure of a class dia-
gram, we translate the class diagram (Fig. 6.7(a)) into a node-edge format
(Fig. 6.7(b)), on which the RGG parser operates.

In the class diagram, classes are represented by compartmentalized rectan-
gles. In a node-edge diagram, a node labeled Class denotes the first com-
partment containing the class name. A set of nodes labeled Atri represents
attributes in the second compartment. Nodes are sequenced by linking two
adjacent attributes in the same order as displayed in the compartment, and
the sequence is attached to a class by linking the first A#tri node with the
Class node. Operations in the third compartment are processed in the same
fashion as attributes by replacing A#ri with Oper nodes.



130 Chapter 6 Software Architecture Design

1 |+Stawn
-+ AdiComponens]

Gt Childng

i

?gg_ggg__@gﬁ_%g@f

{b) The corresponding RGG diagram

Fig. 6.7. A class diagram and its corresponding RGG diagram



6.4. UML Class Diagram Verification 131

Associations denoted by straight or diagonal lines in UML carry informa-
tion about relationships between classes. In a node-edge diagram, a node
labeled Asso is used to symbolize an association. A line connecting an
Asso to a Class node holds the association. Associations may be named, In
order to indicate the direction in which the name should be read, the veriex
labeled R inside an 4sso node is connected to the Class node designated by
the verbal constriuct, and the vertex labeled L to the other Class node. On
the other hand, if the order is unimportant, we ignore the difference be-
tween R and L. Aggregation and Composition, two special types of asso-
ciations, are iranslated in the same way as associations.

In UML, the generalization specifies a hierarchical relationship between a
general description and a specific description. In the node-edge representa-
tion, a line, which links from the vertex labeled ¢ in a Class node to the
vertex labeled p in the other Class node, designates the generalization rela-
tionship from the former class to the latter. In other words, the vertex la-
beled ¢ indicates the general class, and the vertex labeled p denotes the

specific clags accordingly.

We introduce a new node to the node-edge representation, namely root,
without a counterpart in the class diagram. The roof is connected to any
Class node representing a class without a super-class. The introduction of
the root node is to facilitate the parser to verify the structure of a node-
edge diagram.

A graph grammar abstracts the essence of structures. It, however, is not
suitable to convey precise information visually. We store specific informa-
tion into attributes. For example, association names are recorded in attrib-
utes associated with Asso nodes. Those values of attributes can be re-
trieved and evaluated in the parsing process.

Fig. 6.7(a) illustrates a class diagram and Fig. 6.7(b) presents its corre-
sponding node-edge diagram recognizable by its RGG. The shaded texts in
Fig. 6.7(a) represent an extension to UML with pattern names, and the dot-
ted rectangles in Fig. 6.7(b) correspond to the extended UML (Dong and
Zhang 2003). We will discuss the pattern aspects in Section 6.5.

A graph grammar can be viewed as a style that any valid graph should
hold, i.e. any possible inter-connection between entities roust be specified
in the grammar. Each production specifies the relationships between local
entities. Combining all the productions together, a RGG grammar defines
the way of constructing a valid class diagram through different entities rep-
resented by nodes with different types.



132

Chapter 6 Software Architecture Design

* T
» 1
<I> Attributes % <%> Template class ! <6> Interface
5 ' v EEIZER]
g LR A i |4Class
7 Sl lass Sy EY
LA i e R
o
---------nn-n—---{ <7> Association
:
¥
1]
¥ o
] ] |
e
E <B> Aggregation
1 L2l 4 4P l ]:P! | 4:P
onn’.ﬁuunnnmn-pnnn‘Ln—} _ml;m 'Iaa ] _E]ﬁﬂ o F—-z]comﬁ clﬂﬂﬂ
<3> Class i s e vl o el Tl kral
} <9> Composition ‘
¥
H 2:5! ] F _ [}:P! 4
| - | Clasa L] AzerlE{eR]Class
 Lrilafacl (TN Bl e lAl5C
................... o o e e e o e o e B e
T
<4> Constraints !
: L 5] ! <10 Inheritance :
1 x . lass R
T A ] [Ha : S
T &T H _
mi ' Class |RI =
X3 ] H 1
ET ; H

.
e e L e L L L e iiedats vt LEDL TN TR

! <12> Association H
] 1
<} 1> Classes r?f“ﬁ ' class Class : -
LA U H hal v <15> lnitial
- = H L2slchk ] = H A
1AL el ]+ 1M L3R H =) «Rool
Class [R H ﬁiﬁ mw% —1 1 A
i §

.---...----.."-..--....--..--L...-..-....----r.---,.,-...----.....----......--.

<13 M‘ulti»inhﬁ*imnm

Class

1

Eimﬁ T 4{:!

<14> Reflective association

3]
S B

<16> Patterns |

-

] e

1R~

Saa

—ass

EaEd ry
:anam

=
e
o

Eel=]
m——
E

E <1 7> Pattern reduction

| CTE TN T P
1§ &Paterny 'M;]m H 'mlwmmu ECK_a -
E oo tﬁ,ﬂ!ﬁm T v e

Fig. 6.8, The graph grammar for class diagram



6.4. UML Class Diagram Verification 133

Fig. 6.8 presents the RGG defining class diagrams. Production 1 reduces
two attributes into one node, which is treated as one entity in later applica-
tions. Repetitive applications of Production | reduce attributes of the same
class to one entity, which can be applied by Production 3 later. Productions
1 and 2 serve to reduce a sequence of attributes and operations. Production
3 specifies the class structure by attaching sequences of operations and at-
tributes to a Class node. Production 4 defines the constraints between as-
sociations. Production 5 specifies the template class, followed by the pro-
duction presenting the interface. Productions 7, 12 and 14 define
associations, and Productions 8 and 9 specify aggregation and composition
respectively. Productions 10 and 13 specify generalization. Production 15
represents the initial state. The nodes and vertices in dotted rectangles de-
fine pattern-extended class diagrams, which will be explained in Section
6.5.

6.4.2 Automatic Verification

There are already some tools supporting the general syntactic checking on
class diagrams. However, they are not capable of performing specific veri-
fication. For example, multi-inheritance may cause ambiguity, it is desir-
able to prohibit it when modeling software written in conventional pro-
granmming languages. Each production specifies a local structure. By
“gluing” separate structures together, repetitive applications of various
productions can generate a complete structure. A graph specifying a struc-
tore is invalid if it breaks at least one relationship specified in any produc-
tion. For example, Production 6 in Fig. 6.8 defines that one interface can
only attach to one class. If an interface is designed to be related to more
than one class, a parser can indicate a violation of Production 6.

The following example illustrates how to verify inheritance relationships
between classes. In Fig. 6.8, Production 10 defines the scenario of single
inheritance, and Production 13 specifies that of multi-inheritance. Since
any valid relationship between components can be eventually derived from
a graph grammar, removing Production 13 implicitly denies multi-
inheritance. In the right graph of Production 10, the edge indicates an in-
heritance relationship between the classes. According to the marking
mechanism explained in Chapter 2, the unmarked vertex p in the bottom
class node representing a sub-class requires that any class can only inherit
from one class. On the other hand, the marked vertex ¢ in the top class
node representing a super-class defines that one super-class can have more
than one sub-class, which does not contradict with single inheritance. If the



134  Chapter 6 Software Architecture Design

multi-inheritance as illustrated in Fig. 6.9(a) occurs, the application of
Production 10 causes a dangling edge (Rozenberg 1997), which is not al-
lowed in the RGG formalism. Considering the scenario where one class
has more than one sub-classes, a successful application is shown in Fig,

6.9(b).

-

1

o 1 -
o

(a) Hlegal i:;heritanae

Fig. 6.9, Iuheritance verification

6.5 Design Pattern Visualization

UML (Booch et al. 1999) provides a set of notations to demonstrate differ-
ent aspects of software systems. However, it is still not expressive enongh
for some particular problems, such as visualizing design pattern applica-
tions and compositions (Dong and Zhang 2003). In this section, we use the
RGG formalism to visualize design patterns in their class diagrams.

Design patterns (Gamma et al. 1995) document good solutions to recurring
problems in a particular context, and their compositions (Keller and
Schauer 1998) are usually modeled using UML, When a design pattern is
applied or composed with other patterns, the pattern-related information
may be lost because UML does not track this information. Thus, it is hard
for a designer to identify a design pattern when it is applied or composed.
The benefits of design patterns are compromised because the designers
cannot communicate with each other in terms of the design patterns they
use when the design patterns are applied or composed. Several graphic no-
tations have been proposed to explicitly represent pattern-related informa-
tion in UML class diagrams (Dong and Zhang 2003). While all these solu-
tions need to attach additional symbols and/or text, they all suffer
scalability problem when the software design becomes very large. We pro-
pose a solution that can dynamically visualize pattern-related information
based on the RGG. As shown in Fig. 6.8, we introduce a new type of
nodes, called pattern, which denotes a specific pattern, and pattern-related
information is expressed by linking a pattern node with its associated class



6.6 Software Architecture Transformation 135

nodes, Fig. 6,7(b) presents the corresponding node-edge diagram by high-
lighting the newly introduced nodes and edges with dotted lines,

A syntactic analyzer can dynamically collect separate pieces of informa-
tion, and reconstruct them into an entity. In the process of parsing, the se-
quence of applications of Production 17 in Fig. 6.8 collects all classes be-
longing to the same pattern together. For example, if the user clicks the
composite class in Fig. 6.7(a), the component class, content class and com-
posite class, which belong to the Composite pattern, are highlighted.
Therefore, there is no need to attach any additional information on the
original class diagrams.

6.6 Software Architecture Transformation

The architectures of software systems are usually not fixed. With the
changes of requirements and contexts, software architecture may be trans-
formed into a new configuration. Furthermore, a high-level software archi-
tecture needs to be refined into detailed architecture (Moriconi et al. 1995)
in software development. This transformation process can be tedious and
error-prone without tool support. This section illustrates the automated
transformation of software architecture between different styles, Graph
rewriting provides a device for reusing existing products by performing a
transformation.

A software architecture style defined through a8 RGG characterizes some
common properties shared by a class of architectures. To satisfy new re-
quirements and reuse current designs, an architecture with one style needs
to evolve into another with a more appropriate style in the new contexts. In
general, software architecture transformation proceeds in two steps: a) ver-
ify the style of an architecture; b) transform an architecture from one style
to another style.

Assume that a system is originally implemented in a client-server style,
only consisting of one server storing all data. In order to retrieve data, cli-
ents must send requests to and receive responds from the server. This
communication pattern is abstracted into a graph grammar shown in Fig.
6.10(a), and an architecture with that style is illustrated in Fig. 6.10(b).

With the increase of the amount of data and communication, one server
may not be able to bear clients’ requests. On possible solution is to distrib-
ute data to different servers. Therefore, we need to transform the current
style to a more advanced one. We divide servers info control server and



136  Chapter 6 Software Architecture Design

data server. A system can only contain one control server, but may have
several data servers. A client sends requests to the control server, which
forwards them to an appropriate data server. Then, the data server directly
replies to the client. Such a communication pattern is defined in Fig.
6.10(c), which is achieved through the transformation rule in Fig, 6.10(d).

3
Server| !
cal
Server| | l }
Gl !
C!i%nt : c:ﬁ%m: Client cﬁ%m cﬁ%lm
(a) Client-server style ;  (b) An architecture with the
d client-server style
---------------- Jp-r-n-sn«m«u-ma«u-uu-u-vw«mnmu
i
: L:Server 1:Server
H
ol -
IS ] [ 1Y [ o
Chient | |Client| |C H NDa ! | Client
(©Anevolved (4 Tramsformation rule
architecture : @

Fig. 6.10. Architectural transformation

We go through another example to illustrate the architecture transforma-
tion. A simple pipe and filter system without feedback is shown in Fig.
6.11(a), where a circle represents a task and a directed edge indicates a
stream between tasks. Cormrespondingly, a node labeled Sir/Task simulates
a stream/task in the node-edge representation. An edge connecting the R/L
vertex in a St node to the QO vertex in a Task node expresses an incom-
ing/outgoing stream. Fig. 6.11(c) illustrates the node-edge representation
for the system shown in Fig, 6.11¢a). Productions defined in Fig, 6.11(b)
abstract the communication pattern in pipe and filter systems without feed-
back. By allowing an edge between Task nodes, which designates a
feedback between tasks, the transformation rule given in Fig. 6.11(d) trans-
forms a system without a feedback to one with feedback. Fig. 6.11(e),
where the dotted edges represent feedbacks, illustrates the system
with feedback after we apply the transformation rule to the example in
Fig. 6.11(a).



] Taskg)

o v o . T T W T

o

(a) Pipe and filter system ) =

without feedback H (b} RGG definition of pipe and filter system )

{c) The node~edge representation for the example system

)

'
~ ¥
] Task o] [l Tesk 0]
= : -
¥
T Task[o| (2 Taskff0] |
- ! {(e) Pipe and filter system with
{d) The transformation rule feedback
]
Fig. 6.11. Pipe and filter system
6.7 Summary

Based on a graph grammar formalism, this chapter has presented an ap-
proach for software architecture definition, verification and transformation.
Through this approach, UML notations can be easily translated to the
graphical notations adopted by the RGG formalism. The conformity makes
the approach consistent with current design tools. In general, the approach
can provide the following benefits:

1. Consistent; It expresses software architectures in terms of “box and
line” drawings (Allen and Garlan 1994), which meets the common
practice of software engineers (Métayer 1998).

2. Scalable: The underlying graph grammar formalism is applicable to
various classes of graphs. It is easy to accommodate new compo-



138 Chapter 6 Software Architecture Design

nents by extending the graph schema and revising corresponding
grammar rules, and thus support software rense.

3. Anmtomatic: Automatically generated by a visual language generator
like VisPro (see Chapter 8), a transformation tool is capable of syn-
tactic checking of software architectures. Automatic transformation
from one architecture style to another assists software engineers to
reuse existing products in the new application contexts.

Using the attributes in the RGG, we can express semantic information of
software architecture and design. In addition to syntactic checking and
transformation, semantic analysis and transformation need to be investi-
gated.

The grammatical approach is promising in providing an intuitive yet for-
mal method to the specification of software architectures. Graph grammars
are used to define architechural styles, which impose constraints on the in-
teraction among components. With the well-established theoretical founda-
tion, the grammatical approach can automatically validate the structural in-
tegrity and reveal the hierarchy of a user-defined software architecture
through parsing.

The graph transformation tool can be considered an authoring language
generator, which can generate a specific design environment whenever
needed. A software engineer without any knowledge of graph grammars
will be able 1o use the generated environment to design software architec-
tures by drawing graphical structures. Syntax check can be automatically
performed within the environment.

6.8 Related Work

Many ADLs, such as Wright (Allen and Garlan 1997) and Rapide (Luck-
ham et al. 1995), have been proposed to model and analyze software archi-
tectures. Based on formal models, those languages allow users to define
software architectures without ambiguity, and thus are suitable for auto-
matic reasoning on architectures. There is, however, a mismatch between
the abstraction level at which users usually model the software architec-
tures and the abstraction level at which users should work with these lan-
guages (Baresi et al. 2003). In order to model software architectures using
those languages in their corrent forms, users need expertise with a solid
technigue background.



6.8 Related Work 139

With the meta-tool capability, the above approach can overcome the prob-
lem by automatically generating a style-specific design environment,
Then, users without any graph grammar knowledge can directly specify
and manipulate software architectures in terms of box-and-line drawings.
Based on well-established theoretical foundations, a graph transformation
engine underlying the environment can verify the structure of user-defined
architectures, Therefore, the graph grammar approach is visual yet formal.

The Unified Modeling Language (UML) (Booch et al. 1999) provides a
family of design notations to model various aspects of systems. Being a
general purpose modeling language, the UML has also been applied to de-
fining software architectures. Medvidovic et. al. (2002) systematically pre-
sents two strategies to model software architectures in the UML. Focusing
on the usability of concepts, Garlan er. al. (2002) proposes several alterna-
tives to map concepts from ADLs to the UML. Both works exhaustively
discuss the strength and weakness of each method. Emphasizing on the
analysis and validation of designed models, Baresi ef. af. (2003) uses the
UML notations to specify the static aspect of structural styles paired with
graph transformation for modeling dynamic reconfiguration. Selonen and
Xu (2003) apply UML profiles to software architecture design process and
software architecture description. Such profiles, called architectural pro-
files, define the steuctural and bebavioral constraints and rules of the archi-
tecture under design, and are used to drive, check and antomate the soft-
ware architecture design process and the creation of all architectural views.

In general, class diagrams provide a declarative approach to defining in-
stances of an architectural style. On the other hand, the Reserved Graph
Grammar proposes a grammatical approach to specifying architectures in a
constructive and incremental fashion. Though the declarative approach is
easier to understand, the constructive and incremental method is more suit-
able for analysis. Furthermore, parsing an architecture can reveal the hier-
archical structure of the architecture.

Some researchers apply the typed graph approach to define architectural
styles. For example, Wermelinger and Fiadeiro (2002) use typed graphs to
specify all possible connections between components. Briefly, a typed
graph <G, £> is a graph & equipped with a morphism # G—TG, where TG
is a fixed graph, i.e. the type graph (Corradini et al. 1996). The typed graph
approach also leads to a declarative fashion as the UML. We argue that
graph grammars are more expressive in specifying architectural styles than
typed graphs by associating attributes to nodes.

Formalizing graphs throngh set theories, Dean and Cordy (1995) apply
the diagrammatic syntax to express software architectures, and use it for



140 Chapter 6 Software Architecture Design

pattern matching, Their work focuses on exploiting the composition of
software architectures. Taentzer et. al. (1998) uses the distributed graph
transformation to specify dynamic changes in distributed systems. The
changes are organized in a two-level hierarchy. One is related to the
change in a local node and the other to the structure of the distributed sys-
tem itself. This work emphasizes on modeling dynamic changes of distrib-
uted systems rather than specifications of structural composition,

Métayer (1998) presents a formalism for the definition of software archi-
tectures in terms of graphs. Dynamic evolution is defined independently by
a coordinator. Métayer's approach only allows a single node to be replaced
with a sub-graph, and thus is limited to those graphs, which can be speci-
fied by context-free graph grammars. On the other hand, the approach pre-
sented in this chapter is more expressive in specifying software architec-
tures by allowing arbitrary graphs in both left and right graphs of a
production. Furthermore, the methodology is supported by a set of tools.
Using the Reserved graph grammar as the underlying formalism, a visual
language generator can antomatically generate an application-specific de-
sign environment, as shown in Chapter 8. The environment is able to ver-
ify the structural properties of software architectures in terms of graphs.

Radermacher (1999) discussed graph transformation tools supporting the
construction of an application conforming to & design pattern, which is
specified through graph queries and graph rewriting rules. A prototype can
be generated by the PROGRES environment (Schiirr et al. 1999). Since the
presented approach conforms to UML, it has a broader acceptance and ap-
plication scope than the above tools.

Based on the theoretic foundation of term rewriting systems, Inverardi and
Wolf (1995) apply the Chemical Abstract Machine (CHAM) (Berry and
Boudol 1992) model to the architectural description and analysis. Briefly,
software systems are viewed as chemicals whose reactions are controlled
by explicitly stated rules. Wermelinger (1998) further proposes two
CHAMs, i.e. the ereation CHAM and the evolution CHAM, to define the
architectural style and the reconfiguration respectively.

Karsai ef, af. (2003) propose the Model-Integrated Computing (MIC) to
address essential needs of embedded software development. The MIC uses
domain-specific modeling languages, which are tailored to the needs of a
particular domain, to represent static and dynamic properties of a system.
Similar to the meta-tool capability of our approach, the MIC supports to
program a meta-programmable generic modeling environment into a do-
main-specific environment, which only allows the creation of models
complying with the abstract syntax of a modeling language. Instead of



6.8 Related Work 141

using the UML class diagram as the meta-model to define the abstract syn-
tax of a domain-specific modeling language, we apply a rule-based para-
digm, i.e. 2 RGG grammar, to define a language. Supported by a formal
basis of graph grammars, the rule-based specification is more suitable for
reasoning and verification.

The approach described in this chapter is also inspired by the development
of the Aesop system, the effort of adapting the principles and technology
of generic software development environment to provide style-specific ar-
chitectural support (Garlan et al. 1994), The Aesop system defines a style-
specific vocabulary of design elements by specifying subtypes of the seven
basic architectiral classes. Then, designers have to over-load the methods
of these subtypes to support stylistic constraints. Taking the advantage of
conciseness and intuitiveness of graph transformation, our approach sup-
ports a high level specification of architectural styles through graph gram-
mars.



Chapter 7 Visual Web Engineering

7.1 Introduction

The development of Web sites with complex interconnections of large
number of Web pages so far has been largely an ad hoc process. There has
been no commonly accepted methodology, which supports ease of design,
navigation, and maintenance of sophisticated Web sites, As the number of
Weh sites is increasing in an exponential order, with the huge information
space provided by the Web, users become increasingly confused when
they navigate a growing number of Web sites; finding the right informa-
tion also takes longer time. The problems are partially due to the unstruc-
tured nature of the current organization of Web sites. For example, in most
of the existing Web browsers, the process of jumping from one location to
another could easily confuse the user. The main reason for this is that the
user does not know the current context of space with respect to the overall
information space.

Attempts have been made to develop tools and facilities to support Web
site construction, although most of these tools are designed only for one
stage of Web design, navigation, and maintenance.

Designing a good Web page is considerably easier nowadays. There are
many guidelines describing in details the so-called good design of Web
pages (Conger and Mason 1998). Siegel (1997) classifies three gencrations
of sites ranging from default backgrounds with wall-to-wall text used in
the first generation through the second generation of visual treatments such
as menus and Web maps. The third generation of Web sites allows users to
pursue paths designed for their needs and interests. We are now in the third
generation and moving towards a more personalized multimedia capable
Web. Hinton (1998) further discusses how an organization could maintain
and design its Web resources with such paths. More and more organiza-
tions are embracing the idea of personalized Web site for different types of
users {(Maarck and Shaul 1997). Personalized paths designed for different



144  Chapter 7 Visual Web Engineering

individuals would enable an organization to tailor its priority and services
for the individuals according to their values to the organization.

A variety of tools, including navigational tools such as browsers and lenses
(Huang et al. 1998a; Muchaluat et al. 1998), and history lists (Frecon and
Smith 1998), have been developed to assist users to overcome the problem
of finding information in the unstructured Web space. WebOFDAV
(Huang et al. 1998a) also tries to help the user to visually navigate the Web
by displaying a sequence of small visual frames corresponding to user’s
focuses of attention. Yet, these approaches do not solve the navigation
problems through structured Web design since Web design and navigation
are not integrated and problems in each domain are tackled separately.

In order to improve the design and navigation of WWW, a well-designed
Web structure is desirable. Better tools are needed that enforce structure in
the design phase, while supporting fully integrated maintenance and navi-
gation capabilities. A complicated Web system can be made more struc-
tured and navigated more easily through graphical visualization and
graphical interactions. More importantly, maintaining a uniform view
throughout the design, navigation, and maintenance cycle can reduce con-
siderable development effort and enhance the navigation efficiency. The
goal of this chapter is to propose an integrated view throughout the Web
development cycle. The major advantages of this approach are the follow-
ing:

s A visual approach to constructing and navigating Web sites is easier
to comprehend than the textual form. A novice user without any pro-
gramming experience would find the visual approach intuitive if the
visual representation could reflect one’s mental image of a Web
structure.

« Automatically generated by a visual language generator, the graphical
Web construction and navigation tool can be rapidly prototyped and
enhanced o meet the end-user’s needs. The generated tool is a syn-
tax-directed visual editor that is capable of syntactic checking of any
constructed Web graph. The Web site design and navigation share the
same graph formalism so that the user’s mental map is preserved.

* A Web site can be maintained using a site visualization tool that
shows the site in the same graphical format as in the design stage.
The full integration of the design tool with a Web site visualization
tool also allows a user to construct new Web sites through reverse
engineering based on some existing site structures and contents.



7.2 The Human-Web Interface 145

7.2 The Human-Web Interface

This section proposes a uniform view of the design, maintenance, and
navigation of the Web, which we call the Human- Web Interface (HWI).

To compare HWI with traditional HCI (human-computer interface), we
congider the following three aspects; the device for which the interface is
suitable and designed, main functionality of the interface, and the target of
the communication that the interface facilitates.

» Device: A HWI could be installed not only on a computer, but also on
a PDA (portable digital appliance), a mobile phone, or a television
set. In the latter case, the HWI needs no Web design function and
thus would not be equipped with a graph editor and Web site genera-
tion engine (as described later in this chapter). The display could also
be much more simplified. Taking a PDA for example, the display
may only include clickable texts and running texts for navigation and
browsing, possibly with a voice interface as in WebViews (Freire et
al. 2001).

» Functionality: The major role of a HWI is to act as a window 1o the
world while a HCI could just be for a standalone computer. There-
fore, the main objective of a HWI is to facilitate information gather-
ing and retrieval while that of a HCI is to facilitate operations on a
computer.

s Communication target: Related to the above difference, the com-
munication target of a HWI is buman while that of a HCI is machine,
The human-to-human communication through HWIs may be direct,
such as in a Web-based net-meeting, and indirect as in usual Web
browsing. To support indirect human-to-human communications in
various professional domains, we need commonly understandable and
agreed communication protocols. The XML standard (W3C 2004a)
has been motivated precisely for this reason.

As illustrated in Fig. 7.1(a), in the traditional human-computer interaction,
the human user’s intention is materialized through the HCI and inter-
preted/executed by the computer, which in i outputs results through the
HCI to be interpreted by the user. Fig. 7.1(b) shows the human-to-human
communication model, realized indirectly through human-Web interfaces,
which communicate to the Web server via the Internet. A full human-to-
human communication path is described as: a human user’s intention can
be materialized on a HWI, which is then interpreted by the Web server ac-
cording to the predefined HWI syntax and semantics (i.c. Web graph



146  Chapter 7 Visual Web Engineering

grammar discussed later); another HWI on the other end materializes and
presents the user’s intention according to the Web server, and the other
humarn user interprets and understands what is presented on the HWI,

——> Matsrialized-by
= Inrerpreted-by
8 Communication

Human @eeeeeedl  Human
» A

(a) Human-Computer interaction model (b) Human-Weh interaction model

Fig. 7.1. Human-to-computer communication in HC] and human-to-human come
mupication in HWis

Both HCI and HW1 aim at enhancing the usability and thus the user’s pro-
ductivity. They may therefore be developed based on similar conceptual
architectures. The Model-View-Controller paradigm, or MVC for short,
has been successfully used to build user interfaces in Smalltalk (Krasner
and Pope 1988). As one of the earliest successful object-oriented pro-
gramming languages, Smalltalk supports construction of new interactive
systems based on existing ones. MVC consists of three main objects as
shown in Fig. 7.2: Model, View and Controller. Model represents the ap-
plication semantics, and its screen presentation is managed by View. Con-
trotler defines the way in which the user-interface reacts to user inputs.

Based on the MVC paradigm, we propose a HWI framework as shown in
Fig. 7.3, where “Graph Editor and Navigator” corresponds to Juput in
MVC, “Web Browser” corresponds to Display, “Filters” and “Display
Markup™ correspond to View, “Customizer” and “HWI Engine” corre-
spond to Controller, and “Web Graph Grammar™ and “XML Database™
correspond to Medel. The framework consists of the support for three ma-
jor activities: Web site design, navigation and browsing, and maintenance
and updating. The front-end of the user interface consists of a Graph
Editor and Navigator (GEN) for Web site construction and navigation that
is capable of automatic graph layout, and a Web browser that could be



7.2 The Human-Web Interface 147

Netseape or Internet Explorer. This combined front-end forms the human-
web interface (HWI).

Fig. 7.2. The Model-View-Controller paradigm

The Web designer uses the Graph Editor of GEN to design and construct
Web sites as graphs to be transformed and processed by the HWI Engine.
The Engine performs grammatical check of the constructed graphs accord-
ing to the predefined Web graph grammar, transforms the validated graphs
into either XML documents or inter-related HTML files, and gencrates an
internal data structure for debugging and maintenance purposes. If the ge-
neric document structure 18 desirable, XML document structures will be
generated and stored in the XML database. The HWI engine is able to
transform from one XML to another, or from an XML description to an
HTML display format according to the predefined transformation grammar
(Zhang et al. 2001¢).

Human-Web
Interface (HWI)
Graph HWI Weh Graph
Editor L] Engine Grammar, |
N [ Fiters
avigator
b | g — XL
{hmit Database

Fig. 7.3, The HWI framework

The HWIT framework supports several modes of displaying, including
Level view, Domain view, Category view, Pattern view, and Constraint
view, These views are implemented by different filfers that are also shown
in Fig. 7.3, These views and associated filters are described in Section
7.5.4. Filtering rules can be defined on various structures, including graph



148  Chapter 7 Visual Web Engineering

structure, Web context, and document structure (Huang et al. 1998b).
Other conditions may be defined to facilitate more specialized filters. Web
designers can design or customize their own filters to suit their specific
application purposes. The Customizer allows a Web designer or webmaster
to define other desired filtering criteria, integrity conditions suited for
maintenance, and syntax-directed operations associated with the Web
graph grammar, For example, the user may define an integrity condition
through the Customizer that no page should belong to more than one
group. Web designers may also customize their designs, such as the use of
graphical notations, the way in which the site will be navigated, etc, to suit
the needs of domain-specific applications,

7.3 Using the HWI Tool

The HWI framework provides a Web designer with a uniform graphical
view for the effective design and maintenance of Web sites, and allows us-
ers to navigate the Web site graphically by direct manipulation and infor-
mation filtering as desired. The Web designer designs and generates a Web
site by drawing the Web graph that conceptually represents the site struc-
ture. Navigation and maintenance of Web sites are performed on the same
Web graph by the user.

During design or navigation, the user can click on any graph node to enter
directly into the page symbeolized by the node without going through all
the intermediate pages. This direct access method via a Web graph is much
more efficient than linear access method in conventional browsers. The
grammatical and structural organization of a Web site allows various (sys-
tem or user-defined) integrity conditions for the site to be checked and any
violation or inconsistency to be reported in a systematic fashion. For ex-
ample, any Web pages that are orphaned by the deletion of some other
pages should be detected.

We have designed an experimental tool, called HWIT (Human-Web Inter-
face Tool), that realizes the above HWI functionality through visual Web
programming and Web visualization. A designer or a user would be able to
view any Web site from different angles, using HWIT's filtering capabili-
ties, in a structured and personalized manner. HWIT also accepts filters
that are defined and specified by users using the Customizer. The tool not
only allows the user to easily navigate and explore the Web, but also
assists the designer to design and maintain better-structured Web sites.
Fig. 7.4 depicts a snapshot of the HWI when navigating Kang Zhang’s re-



7.4 Graphical Programining for Web Design 149

search home page on the Internet Explorer (IE} by a simple click on the
“research” node in the graph on the navigator. The Web page shown on the
IE on the right-hand side represents the “vesearch™ page in the navigation
window on the lefi-hand side, HWIT s “Preference” dialog allows the user
to choose a preferred navigational browser from various options.

Visual Programming and
Software Visualisation

2

Fig. 74. Navigation on a Wely graph in HWIT

7.4 Graphical Programming for Web Design

Visual structures and relationships are much easier to reason about than
similar linguistically described structures. This is why designs in many ap-
plication domains have been conducted on graphical representations. Us-
ing visual programming techniques to graphically design Web sites and
Web pages will obviously enable more visual artists and other non-
computing professionals to develop their own Web sites easily. The main
philosophy behind the HWI framework is its consistent visual approach to
Web design, navigation, and maintenance. This section introduces the con-
cept of Web graphs and their notations, and describes the support for
multi-versioning and reverse Web engineering through graph visualization.



150  Chapter 7 Visual Web Engineering

7.4.1 Web Graphs and Design Notations

A graph G (N, E) consists of a finite set N whose members are called
nodes and a finite set E whose members are called edges. An edge is an
ordered pair of nodes in N. A node of a graph G1 can itself be another
graph G2, which is called a sub-graph of G1. The properties of a graph
may be inherited by its sub-graphs. We regard the organization of a Web
site of any size as a graph, known as Web graph. A node in 2 Web graph
represents a Web page, and an edge represents a link from one page to an-
other. The World Wide Web is certainly the largest Web graph that is ex-
panding all the time. For scalability and convenience of design and naviga-~
tion, we define a special class of nodes, called group. A group represents a
set of pages that are connected to a common parent page, and share the
same set of attributes.

The distance between a pair of nodes, node A and node B, is defined as the
number of intermediate nodes along the shortest path between A and B
(including B). A sub-graph of graph G consisting of a node A and all such
nodes in G that have a distance of N or shorter from A is called 4 s level-N
sub-graph of G, or simply 4’y level-N sub-graph.

A graph class provides the general common properties that dictate whether
certain operations are applicable to the corresponding graph objects. A
Web graph can be constructed using a combination of tools: a graphical
editor for constructing a Web graph at the high level and a Web page tool
for constructing Web pages at the lower level. This is demonstrated in Fig,
7.5, that captures a snapshot during the design of the “C85330” home page
using the Netscape Composer (launched from the “CS5330” node within
the HWIT Graph Editor). The graphical editor supports two-dimensional
construction of Web graphs with direct manipulation.

HWIT wuses a small number of simple notations, as shown on the left hand
side of the screen in Fig. 7.4 and Fig. 7.5, to design and visualize the com-
ponents of a Web graph.,

The rectangle denotes a Node that represents a Web page. The label is
used to identify the node and the page.

The round-comered rectangle denotes a Group, representing a group of
Web pages that are combined together either due to their commonality or
for the brevity of viewing. It is like a Web template or class, which can be
used to generate similarly structured-pages. A Group also has a label that
identifies a specific class of pages. This notation also enforces the consis-
tency in the pages belonging to one Group.



7.4 Graphical Programining for Web Design 151

The thin arrow denotes an Edge that represents a Web hyperlink. This is
the most common link seen in Web pages,

Fig. 7.5. HWIT Graph Editor and its connection to a Web page editor

The thick arrow is called a Gedge, short for Group Edge, which repre-
sents an edge coming out of or entering a Group, The difference between
an Edge and a Gedge is that a Gedge connects to a Group and thus re-
fers to all the Nodes belonging to the Group (some kind of inheritance).
For example, if there is a Gedge connecting a2 Group A to a Node D and
Node B is a member of A, then B is also connected to D. More impor-
tantly, the Nodes connected by Gedges to a Group share a common set
of characteristics and attributes. This is useful in generating consistent
look-and-feel pages.

The broken-line arrow (not shown in the figures) is called a Hedge, short
for Hidden Edge. It may be defined as either a connection between pages
of different domains, or as a connection between a collapsed node and its
neighboring node after a filtering effect. When generated automatically by
HWIT a Hedge indicates the existence of a connection (in form of hyper-
link) between collapsed nodes. The designer may use Hedge at the design
stage. In this case, a Hedge denotes either an Edge or a Gedge between
two nodes and the designer has not yet made a decision in an early stage of
design.



152

Chapter 7 Visnal Web Engineering

Each constructed Web graph is syntactically verified against the Web
graph grammar that is defined according to the reserved graph grammar
(RGQ) defined for Web graphs,

7.4.2 Graph Operations

At the design level, the graph-oriented operations for editing, navigation,
and maintenance are categorized into the following groups:

L

Graph editing: this category is for the construction and editing of a
Web graph, whose nodes are associated with Web pages or are lower
level Web graphs, i.e. sub-graphs;

Sub-graph generation: these operations derive sub-graphs according
to some classification or filtering criteria. Sub-graphs are easier to
navigate and maintain than a full graph. Categorizing sub-graphs re-
meoves unrelated information in the display and during processing.
This also allows the user to record and replay a series of browsing
steps, expressed in a sub-graph.

Query: these operations provide information about the graph, such as
the number of nodes in a graph, whether an edge exists between two
nodes, and how a node is reached from another node. Such informa-
tion is useful for the Web design and maintenance.

Time and version control: graphs may change over a period and may
reach a particular state at a predetermined time. For example, a Web
designer may set a time when a page or a sub-graph should be acti-
vated or disabled. A graph from an early state may be partially reused
and incrementally updated for a later graph. Graph states are repre-
sented through versioning.

Viewing: these operations include applying various filters in selecting
certain categories of sub-Webs, graph updating due to a change of
any graph element, and collapsing of a sub-graph into a graph node
for reducing clustering. To support scalable visualization, HWIT al-
lows a number of nodes to be collapsed into a single node, which is
called a super-node, graphically, it is represented as a Group. This
operation achieves the zoom-in effect. A super-node can be expanded
to allow its contents to be viewed or modified. The expansion
achieves zoom-out. The zoom-in and zoom-out effects help designers
to view their designs easily. Collapsing and expanding could be per-
formed in various levels or depths.



7.4 Graphical Programming for Web Design 153

7.4.3 Web Graph Grammar

mWebgmphgmnnnaruaedinHWITishasedmthzmsmégr@k
grammars (RGG) presented in Chapter 2. The main advantages of using
the RGG formalism include its expressiveness and efficiency in parsing.

In HWIT, the Web graph grammar illustrated in Fig. 7.6 is used to parse
and interpret a created graph and perform related graph operations. The
correciness of a partially or fully constructed Web graph is checked ac-
cording to the Web graph grammar. HWIT maintaing referential integrity
on the design to avoid broken links on the actual pages.

<1 Root
= Root{1]
A B ]
<> Root-Node <3> Root-Group
Bootf1} Reotf1}
Root[1} | = m— Rootf1]}| = i
] Lul L]
N%] 2]
B
<4 Group-Node <5> Node-Group
Group(11 Node[1]
[ZEl Ll
Groupfl1] = l Modef11] =
75 ] &l )
Node[2] 2]
pl? M
<6> Group-Group <7> Node-Node
HWode[1]
Modef 1} I = [
Ll
i
i B '

Fig. 7.6. Web graph grammar

As shown in Fig. 7.6, the Web graph grammar is simple and has seven
production rules. Parsing a Web graph takes two phases: syntax parsing
and semantics parsing. Syntax parsing is to check whether the graph is



154  Chapter 7 Visual Web Engineering

valid. If a graph is eventually transformed into an initial graph (i.e. L ) by
the graph rewriting rules, it is valid. Semantics parsing is to produce a re-
sult or perform actions by executing a graph. The result is meaningfial only
when the graph is valid. The syntax and semantics are specified in the
same set of graph rewriting rules. The graph transformation process checks
the syntax of the graph and translates it into the textual specification in
XML or HTML and internal formats at the same time.

Associated with each rewriting rule, an action code performs a syntax-
directed computation over the attributes of a redex when the production is
applied, For example, a simple action included in any production of the
Web grammar can be written as follows:

action{fAAMGraph g){

Aftributes attribufes = g.getAttributes();

(Property) attributes{2).get("URL");

}
The action takes a graph g as its input. ¢ bas a matching redex isomorphic
to the right graph of the production. To facilitate the access of attributes in
the redex, an array referring to required attributes is first produced through
the method g.getAttributes(). The array member aftributes(2), for exam-

ple, refers to the attributes of the node which bas 4_ref = 2. The URL of
this node is obtained so that the related page can be displayed.

7.4.4 Information Filtering

The HWI framework supports several modes of displaying, including
Level view, Domain view, Category view, Pattern view, and Constraint
view. The Level view allows the user fo choose the level of Web page
pointers to display, i.e. a given level of linked pages in the Web graph rela-
tive to a given node. The Domain view shows the pages of a given appli-
cation domain. If the Web designer has classified all the pages according
to some application criteria, the user can choose Category view to see a
given class of pages. The Pattern view allows the viewer to see some
common patterns in a Web graph. Finally, the Constraint view shows all
the pages that satisfy a given set of constraints.

The views described above are implemented by different filters that are de-
scribed below. Web designers can design or customize their own filters to
suit their specific application purposes,



7.4 Graphical Programming for Web Design 155

» Level filter. If the user selects a particular node, say node A in a Web
graph, and specifies a level N, the system will display A’s level-N
sub-graph. The Level filter makes use of hierarchical nature of the
Web information space to set the levels. Only information of the
given level will be shown on the view. “Collapse” and “expand” op-
erations use the level filter to decide whether a particular page will be
shown.

» Domain filter. The domain-related pages can be displayed if the user
provides several keywords of an application domain.

» Category filter. The Category filter allows user to view the Web
pages belonging to certain categories. The user could choose catego-
ries to be viewed from a list of categories available. This list of cate-
gories is gathered when the user adds new Web pages into the Web
graph and categorizes them by filling the property form for each
page.

» Pattern filter. Groups of Web pages with certain patterns can be fil-
tered and shown in the view. A typical use of this filter is when the
user attempts to remove redundant pages by comparing similar sub-
graph patterns, The filter accepts a sub-graph (perhaps generated us-
ing another filter) from the user and finds the matching patterns to
display. The matching process can be slow for a large Web graph.

» Constraint filter. Web pages that satisfy certain constraints can be
displayed in the view. Examples of constraints are file size, file at-
tributes, file’s creation dates, etc. For instance, the user may wish to
view all the pages under a certain file size.

Filtering rules can be defined on various structures, including graph struc-
ture, Web context, and document strycture, Other conditions may be de-
fined to facilitate more specialized filters. Web designers can design or
customize their own filters to suit their specific application purposes,

7.4.5 Support for Multi-version Web Sites

Web designers are under increasing pressure to produce updated Web
sites. The conventional approach to creating and modifying a Web site is
to create every single page and make changes on the copy of the source
code of the page. Problems arise when the main frames of the pages are
almost the same while changes are needed only for part of the original
documents. To allow efficient ereation and modification of changing Web
sites, the idea of multi-version Web sites has been proposed (Wadge and



156  Chapter 7 Visual Web Engineering

Yildirim 1997), In a multi-version Web site, a generic source page acts as
a template for other documents in the same site. The generic source page
represents the common part of other documents and is used as the index
page of the site, Each of the other documents can be considered a version
of the site. Every request from a client is associated with a version label
that is interpreted by a CGI or Java Servlet program on the Web server to
point to an appropriate version of the document. This version of document
is then retrieved and loaded into the template of the generic source page to
be displayed. Multi-versioning is also useful when different languages or
different representations are needed on a single Web site.

Fig. 7.7 depicts a possible organization of a multi-version stock market
site, in which each stock market source page (a version such as that of
“New York™) share a generic information page. In this case, different
graph objects carry different meanings under different contexts, the seman-
tics of a graph operation will depend on the context defined by the Web
designer. Graph operations can be implemented according to their con-
texts but all provide the same interface to the designer,

HWIT supports the concept of associative queries for multi-version Web
sites. The basic idea is that all the objects in a generic source page are
categorized into three hierarchical classes: root, node and leaf, and they
form a hierarchical graph. HWIT uses a data stmucture called virtual ver-
sion tables (VVTs) to organize different versions of a document and facili-

tate the retrieval of appropriate documents.

Reqwests with version

il
-

[ [ ][] [

New York
Historie
. Pri Londen

Tokyo
Real-timey  [Hong Kong

\ Version.L.1]] NY.htmi
VersionL.2{i LDhtml
™ Version L3} TKhtml

! On-lne order !
: VersionL.4 E HE.html
| g me.[‘,nu Ot |

Fig. 7.7, A multi-version Web site

™y
™
N
™,

AV A AV 4

N
N
N
N
.




7.5 Web Reuse Through Reverse Engineering 157

The title page is considered the root class. Node classes incnde HREF
links, includes, headings, and other node classes. Leaf classes are disjoint
objects such as graphic files and audio files, A version label is assigned as
an attribute to the root class and objects in each leaf class when submitting
a request for a specific version, A hierarchically structured graph is created
when the version document is generated. Information retrieval is achieved
by querying the graph of the version through VVTs. More details of the
associative query approach can be found in Zhang and Zhang (2000).

7.5 Web Reuse Through Reverse Engineering

One of the major advantages of integrating Web design and navigation fea-
tures in the HWIT framework is the capability of reusing existing Web
graphs of pre-developed Web sites for the generation of new Web sites.
Web graphs generated in HWIT provide not only the visualization for
viewing and navigation of Web sites, but also the graphical user interface
for direct manipulation of Web data, attributes and relational structures,
We call the process, the generation of new Web sites through the direct
visualization and editing of existing Web graphs, reverse Web engineering.

7.5.1 Reverse Engineering Approach

In HWIT, all Web graphs are commonly presented as node-like diagrams.
To reduce the life cycle of Web engineering, HWIT provides facilities for
reverse engineering of Web sites. We can use the HWIT editing environ-
ment to quickly migrate the Web graph of an old Web site into the Web
graph of a new Web site. We can then visnalize the new Web graph on a
graphical user interface to create (edit) new Web data (sites).

A Web designer could use HWIT to display an existing Web graph as the
primitive Web graph of a new Web site, and modify the attributes and
structures of this Web graph through direet visual editing, and then create
the new site as well as the graph-migration by writing back (output) the
modified Web graph into a new Web site. We adapt the techniques of
Huang et al. (1998b) for reverse Web engineering. Fig. 7.8 is a transition
diagram showing three phases of the reverse Web engineering process.
The process allows any levels of details in a Web site infrastructure to be
preserved and effectively reused.



158 Chapter 7 Visual Web Engineering

We use an incremental visualization technique to navigate the entire Web
site as we assume that the corresponding Web graph of the Web site is
very large that is unable to be displayed entirely in any type of the avail-
able screen with a limited number of pixies. The navigation of the Web
graph uses a sequence of logical display frames. These frames maintain
the user's orientation for Web exploration. This method also reduces the
cognitive effort reguired to recognize the change of views, This is done by
connecting successive displays in the logical display frame of the Web
graph and by smoothly swapping the displays via animation as shown in
Fig. 7.9,

The underlying structure of the hypermedia system on the Web can be re-
garded as a huge digraph with nodes and edges representing URLs (or an-
chors) and links respectively. For the purpose of vispalization and back-
tracking during navigation, it is more convenient to make no distinction
between the directions of hyperlinks. We will treat a Web graph as undi-
rected. Furthermore, we assume that the Web graph G we dealing with is a
huge, connected, undirected graph.

To display a given Web site as a graph, we need an effective and efficient
graph layout algorithm. Among many graph drawing algorithms, force-
directed algorithms (Di Battista et al. 1999; Eades 1984; Huang et al.
1998b) are very popular; they are easy to understand, and the results of
layouts can be good. HWIT uses a force-directed algorithm to draw exist-
ing Web graphs for visualization. A force-directed algorithm views a
graph as a system of bodies with forces acting between the bodies. The
bodies are represented nodes in the graph, and the forces are relationships
between the nodes in a graph and determine the geometrical positions of
the nodes. A force-directed algorithm aims to compute a position for each
body such that the sum of the forces applied on each body is locally mini-
mized,



7.5 Web Reuse Through Reverse Engineering 159

HWIT Graph Editor & Navigator

Fig. 7.8. A transition diagram showing three phases of Web reverse engineering

e 'ﬂ,,m—--‘.,%p& sequence of logical frames

o .,
'f‘ The path of exploration e ..
/A .,
H £ '\,‘

F kS
Eif "*i Fs %
i
H Fu Fa . ! {a

R B

—

g >
.»“,‘.yn Jm———

The huge Web graph M,,w"f
~ o
*‘.h“"». - i
", e

.
s i S

Fig. 7.9, An exploratory visualization model

One of the most popular force-directed algorithms is called the spring al-
gorithm (Eades 1984). The original spring model uses a combination of
spring and gravitational forces. The spring force is based on Hooke's law
springs, and the strength of the springs varies. The gravitational force fol-
lows the Newton's universal law of gravitation, except that attraction is re-
placed by repulsion. Edges are modeled as springs, and nodes are particles
that repel each other. This is illustrated in Fig. 7.10.



160  Chapter 7 Visual Web Engineering

(beautiful)

Fig. 7.10. Spring model represents nodes as steel rings and edges as steel
springs, and then finds a drawing with a minimal energy

7.5.2 Web Visualization Algorithm

A Web graph being visualized is treated as a rooted tree, which consists of
a set of focus nodes, each swrounded by the nodes linked to it. A focus
node is usually the center (or previous center) of the user’s attention when
navigating and viewing the Web graph.

Suppose G=(V, E) is a connected Web graph, v is a node. A node u is
called a neighbor of v if there is an edge between u and v. The neighbor-
hood tree of v is defined as the subgraph of T(v)=(N(v}, L{¥)) of G, where
N(v) consists of the neighbors of v and v itself, L{v) consists of the edges
between v and its neighbors.

Given a chain Q={v,¥1,...Vs} of nodes, a logical display frame (LDF), F =
(T,Q) consists of a spanning tree T of the union of the neighborhood trees
of these nodes and (; the nodes vy,v3,...,V, are called the focus nodes of F.

We proceed by visnalizing a sequence Fi=(Ty, Qv)y, Fo={T5,Q) ... of logi-
cal display frames. To limit the size of these frames, we assume a upper
bound B on the number of focus nodes in them, that is, |Qy<=B (i=1,2,...),
where |(} denotes the number of nodes in Q.

To obtain Fyiyy from F;, the user selects a non-focus node u in F; with a
mouse click, if u has more than one neighbors, then it becomes a new fo-
cus node of Fiy; Now if [Qf=B, we will delete an old focus node v from
Q,, that is, the chain of focus nodes in Fi is Qu=Qy+{u}-fv}. We choose
v to be one of the focus nodes in Q, whose graph-theoretical distance from
u is the largest in Fi. Using these focus nodes, we can easily calculate Fi.

A drawing D of a Web graph G = (V, E) consists of a location for each
node v € V¥ and a route for each edge e & E. A visualization of the se-
quence Fy = (Ty, Qo) Fz = (T2, Qu), .. of display frames consists of a
drawing Dy of each graph T;. Drawing sequences occur in many interactive



7.5 Web Reuse Through Reverse Engineering 161

systems which handle relational information. Most such systems suffer
from the ““mental map" problem: a small logical change in the graph re-
sults in a large change in relative positions of nodes in the drawing. The
mental map problem is addressed by ysing animation or “in-betweening”
along with a force-directed layout algorithm (as discussed below) to pre-
serve the mental map between drawings.

Each drawing B); is a “spring drawing”, that is, it is calculated using the
force-directed algorithm. The “in-betweening” technigue aims to achieve
the twin goals of good layont and the preservation of the mental map. The
in-betweening consists of a sequence D%, D', D% ... Dy of drawings of T;
called screens. They are computed by the modified spring algorithm
(Huang et al. 1998b), based on the original spring algorithm (Eades 1984).

The modified spring algorithm secks an equilibrium configuration of the
forces for the current display frame Fy. That is, a drawing in which the total
force fiv} on each node v is zero. When a logical transformation occurs
from view F; to another view Fy, , the current equilibrium configuration of
the forces is broken by deleting and adding nodes. Thus, the modified
spring algorithm moves nodes toward the next equilibrivm configuration
of forces for the new display frame Fy.;. From one screen DY to the next
screen D', (each animation loop), the animation model computes the to-
tal force fiw} for every node v in F; (except the history nodes) and moves
cach node v a small amount proportional to the magnitude of f{w) in the
direction of f{v). Each D' has energy a little lower than that of DY; . The
movement stops when the user makes another logical transformation, or
when the system reaches equilibrivm.,

In order to address the specific criteria of incremental drawing and clearly
distinguish the focus nodes and their neighborhoods, we have extended the
spring model by adding some extra forces among the neighboring nodes
surrounding the focus nodes. Suppose that F=(G;, Q) is the display frame
being visualized, where Gi=(V;, E)) is the Web graph consisting of a vertex
set V; and edge set E;, and () is the set of focus nodes. More precisely, the
force applied on node v is:

SO = X fort Y gt D e
weN{(v} weki ueld

where f,, is the force exerted on v by the spring between u and v, and gy

and hy, are the gravitational repulsions exerted on v by one of the other

nodes u in the graph. This extended spring model aims at satisfying the

following three important aesthetics:



162  Chapter 7 Visual Web Engineering

The spring force between adjacent nodes ensures that the distance between
adjacent nodes u and v is approximately equal to zero length.

* The gravitational force ensures that nodes are not too close to each
other.

# The extra gravitational force aims to minimize the overlaps among the
neighborhoods in the display frame and to keep the focus nodes along a
straight line.

7.5.3 An Example

To illustrate how the reverse Web engineering works, a simple example is
presented. Fig. 7.11 and Fig. 7.12 demonstrate two different phases, dlis-
play and creation, of the reverse engineering process. Fig, 7.11 shows that
a Web site is being selected and the corresponding Web graph is read into
the HWIT Navigator for visualization, This is achieved by selecting the
root page from the pop-up file management window. The layout of the
Web graph is animated when the extended spring model is applied. The
user may manually drag nodes and edges in the graph during animation to
adjust the graph into a user-desired layout. The user can also use this Web
graph to navigate the Web site for finding information he/she needs.

After a desired layout is reached, the user can switch from the navigation
mode to the editing mode in HWIT, and modify the attributes and structure
associated with the original graph as shown in Fig. 7.12, and then create
the new Web site by simply save this modified graph into a newly named
Web site, Fig. 7.12 is a snapshot showing that a sub-graph has been added
into the bottom of the original Web graph and the properties of node
86366 has been changed in the editing mode of HWIT. The user can then
create a new Web site (the third phase of the reverse engineering process
in Fig. 7.8) by simply clicking on the “convert back” button to write back
the modified properties of Web graph into a newly named Web site.



7.5 Web Reuse Through Reverse Engineering 163

Fig. 7.11. The first phase of reverse engineering that displays the Web graph of an
existing site in the HWIT Navigator

Fig. 7.12. Modifying the structure and properties of the existing Web graph and
save the changes to create a new Web site



164  Chapter 7 Visual Web Engineering

7.6 Summary

This chapter has presented a visual framework to Web site design, naviga-
tion, and maintenance. It advocates the integration of the tools for all ac-
tivities, ranging from Web page and Web site design, navigation and
browsing, to Web system maintenance, while preserving the same mental
map for both the Web designer and the Web user throughout these activi-
ties. The presented approach is a step closer towards narrowing the gap be-
tween Web designers and users (Nakayama et al. 2000).

A prototype of HWIT has been implemented in Java, which is capable of
generating Web sites from Web graphs drawn on the HWIT Graph Editor.
The Web re-engineering and reverse Web engineering capability in HWIT
allows previously developed Web sites to be visualized and re-developed
graphically, The modified spring algorithm can be adapted to support more
personalized and pleasant viewing during navigation and maintenance,

This work has opened up many more opportunities for further investiga-
tion. Possible future work includes the following.

» Security features can be built into the framework so that different
groups of people may access different parts of a Web site.

» Empirical studies need also be conducted in order to evaluate the vs-
ability of HWIT in real world applications.

7.7 Related Work

To aid Web navigation and maintenance with a sense of orientation, re-
searchers have proposed “site mapping” methods for constructing a struc-
tured geometrical map for one Web site (Maarek and Shaul 1997) or for
comparing the structures and contents of different Web sites (Liu et al.
2002). They can guide the user through a limited region of the Web. Other
approaches define the entire WWW as a graph and then navigate the graph
{Anupam et al. 2000; Huang et al. 1998a). Yet, these systems do not sup-
port the integration of Web site design, navigation, and maintenance.

Various tools and methodologies have been developed or proposed in the
past few years. Most of the tools assist, in one way or another, different
areas of WWW development, mainly aiming at improving navigation. For
example, Fisheye-View Graphical Browser (Muchaluat et al. 1998) adopts
fisheye view filtering strategies (Sarkar and Brown 1994) to allow logical



7.7 Related Work 165

management of documents with nested compositions. This browser de-
grades dramatically as the number of nodes increases.

WebMap (Doemel 1994) shows a 2D graphical relationship between
pages. Small circles depict pages whereas links are coloured to indicate the
status of destination documents. Users can visualize the document space
without having to visit all documents since WebMap implements an ex-
ploratory approach to gather the documents as a batch job. However, the
whole process is time-consuming and resource intensive.

PadPrints (Bederson ef al. 1998) is a zooming Web browser within a
multi-scale graphical environment. It displays multiple pages at a time and
a large zoomable information surface depicts the links between the pages.
The current page is clearly shown as it is larger than other pages. The sys-
tem only enhances information browsing among different documents.

WebML (Ceri et al. 2000) uses a model-based approach to Web site de-
velopment. In WebML, a structural model expresses the site’s data content
using commonly accepted modeling languages such as UML,; hypertext
model describes the contents and structure of the site’s pages; presentation
model dictates how the pages are presented with a layout specification; fi-
nally, personalization model allows group-based or individual-based con-
tent categorization.

Other tools use software engineering methodology to approach Web de-
velopment. For example, WOOM (Coda et al. 1998; Klapsing et al. 2001)
and XWMF (Gémez et al. 2001) use object-based formal metadata model
for designing Web structures expressed as directed acyclic graphs (DAGs).
The emphasis is on the high level design for interoperable exchange and
reasoning about the Web data. The O0-H (Object-Oriented Hypermedia)
method uses UML-like conceptual modeling to specify navigation and
presentation features. They do not address the important issue of inte-
grated view or offer the capability of reverse engineering.



Chapter 8 Visual Language Generation

8.1 Introduction

Implementing a visual programming language (VPL) is much harder than
implementing a textual programming language (Myers 1990). VPLs are
usually embedded and tightly integrated within visual environments. Con-
sequently, they are often characterized by the attributes of the environ-
ments (Goldberg et al. 1994). The VPL implementation involves the im-
plementation of a whole programming environment with a user interface
which supports developing programs using a visual language. Notice that
VPL interfaces are not the same as graphical user interfaces (GUIs) nor are
they just for visualization. Traditional GUI development toolkils are in-
adequate for the creation of VPLs because they do not support syntactic
and semantic specifications of visual programming. The graphical user in-
terface of a visual language relates to the language’s syntax and semantics.
The interaction (dialogue) between the interface, the syntax and the seman-
tics must be maintained. Implementing a VPL interface and its support for
syntactic and semantic specifications of visual programming suffers from a
problem common to all large, complex software systems, i.e. the genera-
tion iz difficult and time consuming. The remaining part of this section will
address the typical problems of implementing VPLs.

8.1.2 Why Automatic Generation?

Repetitive efforts have been spent on developing various domain-oriented
WVPLs, due to their specialised requirements and inseparatable development
processes. In a visual programming environment, users must be able to in-
teractively construct and manipulate expressions in the visual language.
The graphical requirements of a visnal language include defining the
visual elements of the language and the graphical relationships that must
be maintained when these elements are comnected together, The editing



168  Chapter 8 Visual Language Generation

operations themselves are event-driven, and appropriate interpretations of
mouse and keyboard events must be provided. Algorithms must be pro-
vided for graphically editing these elements, The solutions to these graphi-
cal requirements are intricate and inherently difficult to implement. The
underlying data structures are complex, containing information about the
visual representation, logical connectivity, domain knowledge, etc. They
make it difficult to parse an edited diagram with a general parsing algo-
rithm, Existing solutions to solving the data structure problem tend to be so
specialized that they apply only to a single visual language.

As a textual programming language construction tool, Lex/Yace divides
the process of language creation into two steps: lexicon definition and
grammar specification. The created lexical and grammar analyzers are
combined together to serve as a language parser, In particular, its rules (i.e.
grammar) can be associated with actions written in C, so that a wide range
of textual languages can be specified. The fundamental reason that no VPL
generation tools can be as effective as Lex/Yacc is that no design model
has been able to completely separate the processes of visual elements crea-
tion, visual editing, and syntax and semantics specifications, Therefore, it
is difficult to integrate independently developed functional components
into a single VPE. Existing tools that aim at supporting different aspects of
VPL generation, e.g., for user interface generation, and for parsing, are not
able to cooperate to generate VPLs. The generation of every new visual
language requires a re-development of the whole machinery.

Another problem with many VPL generation tools is that their underlying
graph formalisms are not expressive enough to describe many types of vis-
val languages or not efficient enough to parse various types of visual pro-
grams. The multi-dimensionality of visual languages makes it difficult to
build formal grammars and compilers for them. While text strings only al-
low concatenation before or after a character, visual languages allow mul-
tiple concatenation options between its visual elements. Attempts at devel-
oping visual grammars using textual grammars as models have had limited
success; many visual language formalisms cannot be specified and parsed
effectively and efficiently with existing grammars. We have addressed this
problem by developing the Reserved Graph Grammar formalism, and its
spatial counterpart, the Spatial Graph Grammar formalism, as discussed in
Chapters 2 and 3.

Tools and formalisms have been created for automatically generating vis-
ual languages. Most of them are specialized in certain aspects of visual
language generation, €.g., nser interface or grammar formalism. For exam-
ple, Pietriga (2005) presented a toolkit called ZVTM based on the layers of



8.1 Introduction 169

virtnal spaces, zoomable cameras, and glyphs. ZVTM aims at promoting
and development of user-interface aspects of visual programming envi-
rorments by easing the creation of structured graphical editors. Others
provide support for producing a complete visual language environment
with limited capabilities. For example, VPE generation fools based on
grammar formalisms usually generate visual editors automatically throngh
their grammars, This is the easiest way to produce a visual editor, but gen-
erated visual editors are often not user-friendly and the functionalities are
limited (Costagliola et al. 1995). Yet, the formalisms which can generate
powerful visual editors do not provide an adequate mechanism to support
syntactic and semantic specifications (Brown 1997) or are inefficient in
parsing (Rekers and Schiirr 1996},

8.1.3 A Generic Multi-Level Approach

To avoid the re-development, we need to find a proper representation of
the data structure and a geperic model, which are able to decouple the
components of a visual programming environment. The approach to be
presented is to view a target or domain-oriented VPE as a specific instance
of a generic VPE such that the techniques applicable to the generic VPE
can also apply to the target VPE and functionalities common to the VPEs
need not be re-developed. This approach enables the design of a generic
visual framework that can be customized into any target VPEs. Such a cus-
tomization process is realised by a set of visual specification tools in a
similar fashion as by Lex/Yace in generating textual languages. The main
characteristics of this work include

+ a high level design model that supports a generic but customizable
framework with decoupled functional modules;

« a set of customization and specification tools which are visual tools
supporting direct manipulation; and

« an underlying graphical formalism that can express and parse a wide
range of visual languages effectively and efficiently.

This chapter presents the design of a generic visual programming envi-
ronment which has a multi-level tool structure. It addresses the issues in
developing a design model that supports the development of a VPE by di-
viding the whole development process into several independent stages.
The model offers several decoupled functional modules, each supporting
an independent development stage. This makes it possible to develop an
effective generic system for the generation and reuse of a wide range of



170 Chapter 8 Visual Language Generation

VPLs. The chapter describes a toolset called VisPro which provides a
similar mechanism as lex/yacc in the process of constructing VPLs, It is
very easy to use, singe the tools in VisPro are meta visual languages. To
formally represent VPLs, VisPro uses reserved graph grammars presented
in Chapter 2 to express a wide range of diagrammatic VPLs. A graph
grammar in VisPro is a set of graph rewriting rules associated with actions
written in Java. The target language compilers for a large class of diagrams
can be automatically generated in polynomial time by VisPro according to
the grammar specifications, Moreover, a set of language components (i.e.
visual objects) can be created through direct manipulation and a visual edi-
tor can be produced according to control specifications. A visual pro-
gramming environment integrating the visuval editor and the compiler is
then created. Therefore, VisPro provides a high level support for VL de-
velopers to rapidly construct a wide variety of domain-oriented diagram-
matic VPLs. It cao easily create both the user interface and the underlying

language,

The chapter focuses on the design, construction, and application of VisPro.
It is organized as the following. Section 8.2 summarizes the design criteria
for a generic VPE, followed by a detailed discussion of the VisPro design
model that meets the criteria in Section 8.3, Section 8.4 describes the de-
sign of the VisPro toolset which consists of a set of decoupled functional
modules. Section 8.5 presents an application of the VisPro system in gen-
erating a visual distributed modeling language. The chapter is summarized
by Section 8.6.

8.2 Design Criteria for VPEs

A generic VPE can be viewed as a collection of visual and textual specifi-
cation tools, which are themselves visual languages and/or textual lan-
guages. A program for generating a domain-specific VPE is a combination
of specifications written in a set of hierarchically organized languages.
Such a complex environment needs a careful design. We regard the fol-
lowing three aspects as the key to the successful design of a generic VPE,

* Heterogeneous programming: the VPE should support heterogene-
ous visual programming, where various visual languages and textual
languages at different levels of abstraction can work together to spec-
ify real world applications.

¢ Hierarchical structure: with the support of various languages and
programming paradigms, the VPE should have a well-designed



8.2 Design Criteria for VPEs 171

mechanism that organizes and coordinates the languages in an effec-
tive and efficient manner.

s Design model: to increase the reusability of existing visual languages
and various language components and simplify the generation of do-
main-specific VPEs, the generic VPE should be designed as several
decoupled modules which can be developed independently with pos-
sibly different formalisms.

The following sections discuss these criteria in more details and how a ge-
neric VPE is designed against the criteria.

8.2.1 Heterogeneous Visual Programming

The argument for supporting heterogeneous visual programming is based
on the following considerations;

s High Level Programming: Visual languages do not usually support
the entire programming process (Burnett 1994). A typical class of
visual languages is designed to be used for vispal manipulation at a
bigh level and to combine low level application components which
could be written in text languages. Examples of this approach include
the  object-oriented  visual  programming  system  HI-
VISUAL (Hirakawa et al. 1991) and the Web service composition
language ZenFlow (Martinez et al. 2005).

e Low Level Programming: Another class of VPLs allows program-
ming only at the lowest level, This type of languages have all the
capabilities needed to express the fine-grain logic in a program, such
as conditions and repetitions. But they do not have the facilities to
organize portions of the program into modules. Most VPLs of this
nanwe are intended for specific problem solving. They provide a
number of primitives for their particular domains, thereby keeping
most programs small enough to avoid the need for user-defined
abstractions. One example is the NoPump system for interactive
graphics (Wilde and Lewis 1990). For such low level VPLs, a high
level organization mechanism could enhance their usability in large
scale applications.

s Independent Development; If visual languages are independently
developed to suit different application purposes, they are usually un-
related to each other. It is diffieult, or impossible, to make these
visual languages work together to solve a complicated problem. The
most plansible way is through a high level protocol, such as a
formatied information transfer system under the O8 level. However,



172 Chapter 8 Visual Language Generation

such a protocol is usually inefficient and error-prone. A framework
for creating hybrid visual programming environments is, therefore,
desirable.

8.2.2 Hierarchical Structure

Schefstrom and van den Brock (1993) proposed a model that organizes
tools used in the software engineering life cycle (Salis et al. 1995). A so-
phisticated application may be specified or modeled by more than one
software tool in a coordinated fashion. These tools may work at different
levels of the software development process, but may interact at the same
level. The relationships among the tools in a programming environment
can be seen as a mulii-level tool structure which supports the following
concepts, as illustrated in Fig, 8.1,

Brviromment

Fig. 8.1. Multi-level tool structure

A service is the smallest functional unit of interest to a developer, A tool
is a strongly related and clearly delimited set of services that support a par-
ticular job, such as a diagram editor. Similarly, a foolset has a set of tools
that show strong internal cohesion and low external coupling. The set of
tools work together to cover part of the development process such as a
compiler, its associated syntax directed editor, and debugger. An envi-
ronment is a group of toolsets. A framework is a set of software modules
that are related to several tools and are typically well-documented and
supported.

As the scope of the support entity increases from a single tool to a large
environment, the cohesion among its components will inevitably decrease.
At the same time, the coupling of the components may also decrease, or at
least not increase. The primary reason for this is that, as the support scope



8.3 Design Model 173

widens, the range of support activities diversifies, Software development
planning, for example, uses toolsets different from those for software con-
struction (programming, integration, and testing).

A sophisticated programming environment, such as a software engineering
environment, may have a set of visual or textual languages. With the
multi-level tool structure, the languages may be seen as tools in the envi-
ronment.

8.3 Design Model

To design a visual programming environment, one needs to consider the
language’s syntax and semantics, and the visual interface. For supporting
the generation of a wide range of VPLs, we aim to maximize the reuseabil-
ity of the language components with the following considerations:

s different modules of a VPE should be designed and implemented
separately, and
s improvement of one module should have little impact on other mod-
ules.
To ease maintenance, modification, and reuse of a VPE, interactions be-
tween different modules of the VPE should be clearly specified. This also
simplifies a VPE’s generation by dividing the VPE into several decoupled
modules, and allows different formalisms to be developed into individual
modules.

8.3.1 The MVC Framework

A popular model for the user interface construction is the Model-View-
Controller (MVC) (Krasner and Pope 1988) framework that has been
successfully used in Smalltalk-80. MVC consists of three types of objects:

Model, View and Controller, Model represents the logical structure of an
application, whose screen presentation is View. View requests data from
Model and handles all the graphical tasks, Controller defines the way in
which a user-interface reacts to user inputs. The standard interaction cycle
is that the user provides some input action and Controller responds by in-
voking an appropriate operation in Model. Model then carrics out the pre-
scribed operation, possibly changes its state, and broadcasts the changes to



174  Chapter 8 Visual Language Generation

all its dependent Views. Each View can query Model for its state and up-
date its display, if necessary,

There are some implementations of MVC which effectively decouple the
relations between different objects and enhance the reusabil-
ity McWhirter and Nutt 1994; Minas and Viehstaedt 1995). They
are, however, mainly for constructing user-interfaces with windows appli-
cations, rather than for constructing visual languages. For constructing
VPLs, more detailed specifications and tools are needed for declaring and
specifying the required interations between the system modules.

Based on MVC, the DV-Centro framework (Brown 1997) aims at support-
ing visual language development, as shown in Fig. 8.2, It uses the Supervi-
sor-Agent pattern to specify the interactions between the modules in the
framework.

ViewController controls fymaseController
notifies

notifies notifie
f controls controls

View controls Image View

notifies

notifies

controly
Subject

Fig. 8.2, The DV-Centro framework

SUPETVISOr | controls Agent
notifies —

Fig. 8.3. Supervisor-Agent pattern

The Supervisor-Agent pattern (Fig. 8.3) assumes that Supervisor must be
able to control Agent’s behavior, while Agent is independent of Supervi-
sor, except that it may notify Supervisor in a predefined protocol. Since a
Supervisor-Agent pattern indicates a one direction dependency, i.e. the de-
sign of Supervisor depends on that of Agent, the DV-Centro framework
reduces the number of dependent relationships in a general MVC model.



8.3 Design Model 175

For example, ImageView in Fig. 8.2 is independent from other modules,
so that it can be developed as a standalone tool,

ImageController

N

ViewController

Fig. 8.4. Dependency relationships

histogram pie chart

Fig. 8.5, A Subject with two versions of Fiew

There are, however, other dependency relationships (as shown in Fig, 8.4)
which have impact on the design and implementation of various modules.
For example, View depends on Subject, which means that it must be de-
signed after the design of Subject. Any change of Subject may affect
View. On the other hand, as Subject is more application-specific than
other modules, the relationships between View and Subject should be re-



176  Chapter 8 Visual Language Generation

versed. For example, Fig. 8.5 shows a model having a Subject with two
versions of Fiew. The model contains some data values, and the views de-
fine a histogram and a pie chart. It communicates with its views when its
values change, and the views communicate with the model to access these
values, With the DV-Centro framework, the histogram and the pie chart
have to be designed according to the specifications of the model. But we
believe that the design of the histogram and pie chart should be independ-
ent of the model so that they are general enough to be predefined in a tool-
set. The best solution is that Subject and View are designed to be inde-
pendent of each other so that a subject can use any suitable views without
changing itself and the views.

8.3.2 An Ideal Design Model

The dependence of ViewController on ImageController and View im-
plies that the high level control depends on its low level implementation
(e.g. ImageController). It is, however, desirable that any improvement on
the low level facilities will have no impact on the high level specification.
So a model that removes the dependency relationship between ViewCon-
troller and ImageController is more flexible.

Considering the model in Fig. 8.4 where the link between ViewController
and ImageController has been removed, we find that View becomes a
key module because it relates to almost all the other modules. To allow
ViewController, Subject, and ImageController/ImageView to be de-
signed and implemented independently, we propose to reverse the relation-
ship between View and ImageView so that these modules depend only on
View. The resulting improved framework is shown in Fig. 8.6, where
View serves as an interactive protocol between different modules,

To represent this framework with the MVC notations, we redefine it as an
ideal design model as shown in Fig. 8.7, where View corresponds to fm-
ageController and ImageView in Fig. 8.6, Model corresponds to Sub-
Jject, Controller corresponds to ViewController, and Protocol replaces
the previous View. This new design model confines the dependencies be-
tween the fonctional modules such that each module can be developed in-
dependently.



8.3 DesignModel 177

histogram pie chart

Fig. 8.6, An improved framework with Supervisor-Agent pattern

oS> s

Controtier

Fig. 8.7. Anideal design model

8.3.3 The VisPro Design Model

The VisPro design model needs a protocol to define the interaction be-
tween its functional modules. The protocol is designed as a combination of
an abstract diagram and a concept space, as shown in Fig. 8.8. An ab-
stract diagram represents a common internal data structure that may be
used to display diagrams in various formats, such as Nassi-Shneiderman
diagrams and flowcharts. In an abstract diagram, which can be considered
a kind of entity-relationship diagram, directions, distances, data and con-
trol flows, joins, contacts, ete, can all be represented as relations between
entities. A concept space is a set of specifications for a group of objects
that share some common characteristics. If we view a concept space as a
lexicon of a visual langvage, an abstract diagram provides the sentence
structure with which the words of the lexicon can be described as visual
sentences by associating each word with an entity or a relation of the



178  Chapter 8 Visual Language Generation

abstract diagram. The sentences are constructed through direct manipula-
tion by the user on the screen (View) and controlled by Controller. By
providing a high level description of domain concepts in the form of a
concept space, Model can interpret the visual sentences. The VisPro de-
sign model specifies the roles of Model, View and Controller, and how
they interact with each other in the design model.

Fig. 8.8. The VisPro design model

» User Interaction Control: View consists of visnal objects which can
be manipulated directly on the screen. For example, a nser may move
the mouse onto a visual object and click the left button to trigger an
action. When a visual object receives a user input, View sends the visval
object to Controller, which interprets the input and sends back a
control command indicating what View should do next. For example,
Controller may instruct View to pop up a menu to allow the user to act
further,

« Diagram Creation: A graph consisting of a set of visual objects can be
created on a visual editor controlled by the Controller. Once the graph
is constructed, its abstract diagram with domain concepts is created. The
mapping relationships between an abstract diagram and a graph implies
that the abstract diagram provides a logical interface understood by all
the VPE modules, and any modification to the abstract diagram will be
reflected on the graph on the screen. A visual editor itself can be a
visual object in View,

» Parsing: Model receives parsing demands from Controller and per-
forms corresponding transformations and computations on abstract dia-
grams.

¢ Layout and Animation: If an abstract diagram is associated with visual
concepts, the parsing algorithm can perform graph layout and animation
by operating on the visual concepts. This is because the appearance of a
visual object may be changed dynamically when its visual attributes are
modified through the corresponding concepts.



8.4 The VisPro Toolset 179

In summary, as long as a domain concept space is provided, each module
can be designed independently and used with other modules by sharing an
abstract diagram and some domain concepts. The following are detailed
descriptions of abstract diagrams and concept space.

8.4 The VisPro Toolset

Based on the above design model, we have developed a generic VPE and a
set of wvisual programming tools for generating domain-oriented
VPEs (Zhang and Zhang 1998). The generic VPE can be customized to
any domain VPEs once the domain specifications are provided through
these tools. Fig. 8.9 shows the generation process, which is supported by
the following three tools:

1. visual object generator that is used to specify visual objects with
desired appearances to be used in the target visual language,

2. rule specification generator that is used to provide the parsing
specification for the target visual language in the form of graph re-
writing rules, and

3. control specification generator that is used to specify the control
commands for each generated visual object manipulated in a visual
editor, which is to be automatically generated.

Vigual Object Control Spec Rule Spec
Generator Generator Generator




180  Chapter 8 Visual Language Generation

In VisPro, the object-oriented language Java serves as a low level specifi-
cation tool for details which may not be effectively or accurately specified
in these visual specification tools. This arrangement allows users to pre-
cisely construct effective visual programming environments.

The tools are meta visual programming languages that are used to specify
domain VPEs through direct manipulation. First, the Visual Object Gen-
erator is used to construct visual objects - it creates the appearance of each
visual object, and attaches a specification of its behaviour produced by
other tools, or another visual program as its logical function. The user then
uses the Control Specification Generator to specify the behaviours of con-
structed visual objects. The specifications will define and automatically
generate a visual editor for the target visual language. Finally, with the
Rule Specification Generator, the user can describe the grammar of the
visual language in forms of graph rewriting rules (Zhang and Zhang 1997).
The rules can be specified as either graphical productions or textual ones
written in Java as action codes. Having obtained all the required specifica-
tions, the generic VPE becomes customized to the desired domain VPE
that integrates the target visual language editor and compiler.

With VisPro, a complete VPL is specified by a lexicon definition and a
grammar specification. A lexicon definition describes the VPL’s visual ob-
jects and the editor with which the visual objects can be used to create a
program. A grammar specification (syntax and semantics) defines whether
the program is valid and what it means. A visual programming environ-
ment is created automatically based on the definition and the specification.

8.4.1 A Case Study

In the following sections, we will explain the functions and the use of each
specification tool by demonstrating the construction of a simple visual
programming environment called summation. More sophisticated VPEs
can be similarly built through the same process but with more interactions,
which will be the subject of Section 8.5. Fig. 8.10 is a snapshot taken dur-
ing the use of the generated summation. Using summation, one can sum
up integers and visualize results. It has three visual classes: numbers,
pluses, and scalers. A number stores an integer which can be entered
through the keyboard. A plus receives integers from two numbers and pro-
duces their summation, also as an integer, which can be stored as a npum-
ber, sent to another plus, or sent to a scaler for visualization. A scaler visu-
alizes an integer in a vertical bar. In Fig. 8.10, the maximal (100) and
minimal (0) values of the scaler can be changed by entering new values



8.4 The VisPro Toolset 181

through the keyboard, During the program execution, the displays of the
numbers and scalers are changed according to the values sent to them. The
following sections introduce the specification tools and explain how sum-
mation can be created using these tools.

scaler

Fig. 8.10. A snapshot of the summation VPE

8.4.2 Visual Object Generator

In the VisPro framework, the Visual Object (VO) generator generates a set
of visual classes to suit any special-purpose visual language by editing the
predefined visual objects called VO prototypes. We call such a process
customization. A constructed visual object is not just an image. It can be
manipulated and may be a composite graph, whose components can be
manipulated independently.

A VO prototype is customizable. Fig. 8.11(a) shows two visual classes
which have been customized, and a VO prototype which is a black box in
its original form. One can edit the VO prototype by triggering the editing
commands attached to the box, i.e. by clicking the right mouse button
when the cursor is over the box. Fig. 8.11(a) shows the menu commands of



182 Chapter 8 Visual Language Generation

the box. For example, by selecting the command create[node] in the
meny items, & node can be created in the box. A sub-graph or a node has
its own commands which can be popped up in 2 menu and used for editing
the sub-graph to obtain a desired shape and color.

a
a
a
a
a
a
a
a
a
%
an

@) (b)
Fig. 8.11. Snapshots of visual object construction

To construct a scaler, for example, a command called selectShape can be
triggered from the pop-up menu. This command opens a dialog box which
contains a set of graph patterns, If a scaler is selected, the black box will be
reshaped to a scaler as shown in Fig, 8.11(b). The dimension and color of
the scaler can be edited and also labeled if necessary,

Fig. 8.11(b) shows three nodes that have been created: number, plus, and
scaler, One may notice that the scaler has a fixed pointer, According to the
semantics, the pointer should be created dynamically using the mouse dur-
ing program editing, and a scaler can have more than one pointer at a time.
This is done in the VO generator by specifying its construction style as
“dynamic” (by selecting the menu item construction in the command
menu).

We unse attributes to parameterize all the three node classes of summation.
The domain attribute for the scaler is (pointer, integer), that for the num-
ber is ("value®, integer), and that for the plus is (“in1”, integer), (“in2",
integer) and ("sum", integer). For example, when we need to set a value
3 to a number object called num, we simply write: num.put(“value”, 3},
where put is a method of the mamber ¢lass.



8.4 The VisPro Toolset 183

For a scaler class, a method of its attributes called put_do can be rewritten
so that when the value of a number connected to the pointer of the scaler
changes, the position of the pointer will be adjusted accordingly. This
modification is done in Java. Other modules do not need to know this
modification when using the scaler, as the put method will automatically
call the put_do method. Therefore, 2 method call like scaler.put(pointer,
3) will put an integer 3 into the attributes associated with the scaler and ad-
Just the position of the pointer geometrically.

An edge class can also be created in the VO generator. The edge named
flow-to used in summation is defined as shown in Fig. 8.12, where two lit-
tle filled rectangles are supposed to be replaced by two nodes in an appli-
cation when the edge is used. The VO prototype of an edge can be custom-
ized by changing its shape, color and label through the menu items
selectShape, selectColor and setLabel respectively.

Fig. 8.12. Generating an edge class with the VO generator

A diagram workbench prototype can be customized to a workbench for a
specific VPL with a set of node classes and edge classes. This is obtained
via the control specification. A workbench can be accessed, e.g. opened,
through its icon. Fig. 8.13 shows an icon for the summation workbench,
which can be created in another diagram workbench as a special icon,



184  Chapter 8 Visual Language Generation

Fig. 8.13, An icon for summation

8.4.3 Control Specification Generator

8.4.3.1 Object-Oriented Editing Commands

The process of editing a graph can be considered consisting of a number of
steps, cach being an execution of a command on the graph. Usnally in a
visual editor, commands and visual objects are independent of each other.
Execution of a command is the selection of both the command and its tar-
get graph. In the object-oriented formalism, a graph is an object which en-
capsulates a set of related commands.

The Control Specification (CS) generator is used to visually generate a
control specification which can be understood by the object-oriented con-
troller. The controller allows basic commands to be triggered from its can~
vas and user-defined commands to be triggered from the created visual ob-
jects.

The CS generator assigns a set of editing commands and relationships to
each visual class. The visual objects instantiated from a visual class can
then trigger the assigned commands. The basic editing commands include
cut, copy, paste, create, link, open, and properties, which are pre-defined in
the VisPro framework. If a user wishes to define additional commands,
he/she can specify them in Java.



8.4 The VisPro Toolset 185

8.4.3.2 Command Specification

Fig. 8.14 shows a visual sentence which specifies a part of control in
summation. The visual objects handled in the CS generator include edge
objects, node objects and command objects. An edge object, e.g. an ellipse
in Fig. 8.14, is an instance of the edge class defined in the target VPL. Its
value is the label type of an edge class, i.e. flow-to, which can be entered
or modified through the keyboard. A node objeet, drawn as an unfilled rec-
tengle, is an instance of a node class, It can be edited to form a super node
which is embedded with some other nodes. For example, the node labeled
plus represents the plus class of summation. A command object, i.e. a gray
box in Fig. 8.14, represents an editing command, and its value (i.e., delete,
link, etc.) can also be entered through the keyboard.

Fig. 8.14. An example of command specifications

In Fig. 8.14, the node object labeled Workbench represents the visual edi-
tor for summation. “Workbench" is a reserved word in the CS generator.
The Workbench node links to a command list which includes three cre-
ate commands. A create specification can be generated by interpreting
the link between a command object and a node. A create command node



186  Chapter 8 Visual Language Generation

linking a plus node, for example, will be interpreted to produce a com-
mand specification create create[plus] plus, where create[plus] is the
name of the command menu item.

The number node object is a super node that has two embedded nodes in
and out. The out node has one command link, which links to an edge ob-
ject labeled flow-to. The flow-to edge object links to the nodes in1, in2,
in, and pointer. This indicates that an out can link to an in1, in2, in, or a
pointer in summation.

The control specification diagram in Fig. 8.14 will produce a list of control
specifications as the following:

Workbench

3

create createl[plus] plus
create create[number] number
create createlscaler] scaler

It indicates that three create commands can be triggered from the visual
editor canvas. The specification

number.out
1
link connect flow-to

indicates that number.out has a link command named connect and can be
linked to other nodes through the edge object instantiated from the flow-to
edge class,

The specifications

VE number.out flow-to plus.inl

VE number.out flow-to plus.in2

VE number.out flow-to number.in

VE number.out flow-to scaler.point.

describe that the number.out may be linked to visual objects instantiated
from plus.in1, plus.in2, number.in, and scaler.point visual classes,
where number.out represents an out node in a number super node. The
number.out cannot link to other node classes which are not provided in
the specifications,

The control specification diagram in Fig. 8.14 can be extended to specify
the complete behavior of summarion. Thus, the CS generator provides an



8.4 The VisPro Toolset 187

intoitive and easy way to produce the control specification for a visual edi-

tor.

8.4.4 Rule Specification Generator

Fig. 8.15 shows a reserved graph grammar for summation. The grammar
completely describes the syntax of a valid summation diagram. For exam-

ple,
<L remove the scaler «Zw rempve the number
x fr—3 L——-—-—[ }" p-- .“
sealesf121] L
??ﬁmm&mph o [out | Wﬂnﬂ gt
«<F» Sum up two mumbers
TET
ompaberf 14}
[Tom]
Ll
bS] =
i |
ribides=g.getiiributes(l
Dal int suan=(int){{Fropentyiatiibutes(1).petCvalue")

mmiberid:6}

+{int){(Proparty)attibutesi2). get(value');
{Propertyjattibutes{4).pull*sum’, sumk;

<d> transfer o datom from 3 mumber @ 2 scaler

[
mﬁlmx m%r‘['&:n
. _@_
= [ o]
seatar(24] seater 32}

L ) L |
nuaber 13} muenbes1; 1)
ion |
De ] e
number] 2:4] mber| 22]
I

<5 transfer a datum from a oember to another mumber

aotionAAMGraph g}

AV Ewea(z) puCvalet sir WM&%%

¥

Fig. 8.15. A reserved graph grammar for summation



188  Chapter 8 Visual Language Generation

* plus.in1 (or plus.in2, or number.in) can connect to plus.out or num-
ber.out but cannot connect to more than one destination,

» plus.out {or number.out) can link to one or more destinations, which
include number.in, plus.in1, plus.in2 and scaler.pointer.

The graph grammar also specifies the semantic aspects. Fig. 8.16 shows a
valid summation diagram. According to the semantics, sub-graph (1) must
be interpreted first by applying the grammar rule of Production (3). Sub-
graph (2) should be done next, followed by sub-graph (3). Otherwise, a
wrong result will be produced. For example, if sub-graph (2) is interpreted
first, since its numbers do not have the correct values (from sub-graph (1)),
the result of sub-graph (2) will be incorrect. Such an order of applications
is not allowed according to the graph rewriting system which dictates that
a rule can be applied to an unmarked visual object only if all of the ob-
ject’s edges are maiched by the rule.

A detailed description and formal treatment of reserved graph grammars
and their parsing complexity can be found in Chapter 2.

¥
¥
¥
@

¥
]
1]

R

L
L)
¥
L)
¥
)
L
¥
L
€
1
T

Fig. 8.16. Application of the grammar



8.4 The VisPro Toolset 189

Parsing a diagram takes two phases: syntax parging and semantics parsing.
Syntax parsing is to check whether the diagram is valid. If a diagram is
eventually transformed into an initial graph (i.e. A) by the graph rewriting
rules, it is valid. Semantics parsing is to produce a result from a diagram.
The result is meaningful only when the diagram is valid. In a translation
process, say from a diagram to a textual specification, the syntax and se-
mantics can usually be specified in the same set of graph rewriting rules.
In this case, the graph transformation process checks the syntax and trans-
lates a graph into a textual specification at the same time. For an executa-
ble diagram, this is not always the case. The syntax and sernantics specifi-
cations of a Petri net visual language, for example, should be specified
separately. This is because a Petri net can be executed repeatedly, while
the syntax checking must be done in finite steps. For summation, the syn-
tax and semantics can be specified with the same set of graph rewriting
rules, as shown in Fig. 8.15.

As mentioned in earlier chapters, an action code performs syntax-directed
computation over the attributes of a redex (a sub-graph of the program
which is isomorphic to the right graph of a production) when the produc-
tion is applied. The actions of the graph rewriting rules of summation are
listed in Fig. 8.15. With the actions, the desired results can be produced af-
ter the graph transformation. For example, the action of Production (3) is
as follows.

action (AAMGraph g)
{

Aftributes attributes=g.getAttributes(});
int sum=(int}{(Property)atiributes(1).get( "value™))
+{int}{(Property)attributes(2).get(" "value™));
{Propertyattributes(3).put("" sum"”, sum)

The action takes a graph g as its input. This graph has a matching redex
isomorphic to the right graph of Production{3}. To facilitate the access of
attributes in the redex, an array referring to required attributes is first pro-
duced through the method g.getAttributes(). The array member attrib-
utes(2), for example, refers to the attributes of the super node which has a
A_ref=2, i.e., number[2:2] in the figure. The sum is calculated by sum-
ming up values of two matched numbers. It is then stored in attributes(3)
as a result.

The Rule Specification (RS) generator facilitates the rule specification.
Fig. 8.17 is a snapshot when using the RS generator, where two kinds of
nodes (left graph node and right graph node) are used to represent the left



190 Chapter 8 Visual Language Generation

graph and the right graph of a production. For example, the node labeled
L{3) is a left graph node for Production (3). The node labeled Duplex is
the head of the rule list. It indicates that the rules are applied in a duplex
mode such that a production is created by linking a left graph node and a
right graph node. Each graph node has a sub-editor for defining a graph in
the node. In addition, a textual editor workbench can be triggered from the
right graph to be used for writing action codes.

thAMGraph 9
sttributes attriliutes=g getAtiributes(s
int susn={intiiPropariyiattrib otes(lhgen" valus
Hin(Propertyatir] butes2).ae  valug Ml
(Bropertylatiribu sl putsum’, sutrz

Fig. 8.17. A snapshot of the rule editor

Fig. 8.17 shows a snapshot of creating Production (3) of the summation
graph grammar, where two windows are opened for editing the left graph
and the right graph of the production respectively. Also there is a textual
window for editing the action, Thus, the RS generator provides visual



8.4 The VisPro Toolset 191

editors for specifying the graph rewriting rules, and a textual editor for
specifying actions. The RS generator can compose complete graph rewrit-
ing rules automatically by interpreting the connected editors.

8.4.5 Implementation

The VisPro architecture includes seven functional modules (Zhang 1997),

as shown in Fig. 8.18:

* The configuration interpreter receives the configuration specification,
and transfers the lexicon definition of the specification to the user inter-
face and the grammar specification to the parsing module.

« The user interface controls the interaction between users and the VisPro
tools.

¢ The underlying structure manages the diagrams which are being edited.

# During parsing, the logical structure module creates and manages the
logical graph converted from the underlying structwre of a diagram.

e The parsing module is designed to parse the logical structure of a dia-
gram using the reserved graph grammar formalism,

« The documentation module automatically records edited diagrams and
parsing results.

+ The actions module collects actions for each VPL from grammar speci-

fications. The collected actions are represented as a Java program and

dynamically linked to the parsing module during execution.

Fig. 8.18. The VisPro architecture

The above VisPro architecture was implemented in Java, One advantage of
using Java is that it is platform independent, so that the system can be
ported to different platforms. Another advantage is that Java is developed



192 Chapter 8 Visual Language Generation

for network programming, This characteristic can support the construction
of VPLs which allow visual programming for the Internet and distributed
applications,

8.5 A Case Study: Generating A Distributed Programming
Environment

This section demonstrates the application of VisPro in generating a dis-
tributed programming environment, called PEDS. It describes the features
of PEDS and then shows how the PEDS environment is generated using
VisPro.

8.5.1 PEDS

In a heterogeneous distributed system, processors and software resources
available are of different types. It is often difficult for a user to interface
cooperative processes which are implemented with different software re-
sources and located on different processors (Grimshaw et al. 1994; Shatz
1993), Unfortunately, there are few systems that are aimed at providing
shared processing power in a distributed environment, while taking into
account the utilization of software resources of the environment.

The programming environment for distributed systems, or PEDS, has the
following important features.

¢ It consists of a set of tools (visual languages) which can cooperate
with each other to solve complicated distributed problems.

» It sapports developing distributed program graphically, so that
resources sharing and mapping can be visually specified. Moreover,
different graph formalisms, such as control flow graphs and Petri
Nets, can work consistently in a single environment.

» A distributed program is divided into several local processes, which
may be located on multiple physical machines. Local processes can
be written using different tools based on existing software resources
of the distributed system such as compilers and program libraries,

¢ A user can have the freedom of control over the mapping of processes
to processors, With a high-level graphical notation, a user can specify
the processor assignments completely, partially, or leave it entirely up
to the environment.



8.5 A Case Study: Generating A Distributed Programming Environment 193

Based on a distributed graph model (Cao et al. 1995}, PEDS can be used to
implement a wide range of distributed programs. Each distributed program
is modeled as a set of related diagrams. The components of a diagram are
implemented with existing software resources of the distributed system.
The construction process is independent of any specific distributed system,
and a constructed program can be mapped onto different configurations by
a flexible mapping facility.

Graph Modeling of Distributed Applications

When designing distributed programs, programmers commonly draw in-
formal directed graphs showing distributed structures (Zhang et al. 1999).
These graphs abstract away the details of the nodes being designed and
concentrate on their interactions. The advantage of this is that the pro-
grammer can specify the distributed structure without concern about the
internal working of each node.

PEDS uses a graph abstraction method to represent distributed programs, It
divides a distributed program into several local processes (LPs) and de-
fines their interactions. Each LP can be allocated on a processor in a dis-
tributed system. A LP is characterized by the fact that all work initiated in
it is, mostly, limited to its sphere of control; it essentially executes inde-
pendently of other LPs except for specific points in its processing when it
needs to interact with other LPs.

The process of creating a distributed program is then divided into two
steps: drawing an overall graph and creating corresponding LPs. A graph-
based visual distributed programming language can help realize this proc-
ess (Chan et al. 2005), With the visual programming language, we separate
the specification of LPs from that of synchronization and communication,
and express synchronization and communication directly (but abstractly)
using graphs.

A LP is defined as a graph node, which can have a set of input and output
ports. With these ports, a graph illustrates the interaction among LPs. As
LPs are located on distributed processors, the interactive behavior de-
scribes the message-passing mechanism that is performed between distrib-
uted processors. A processor can send messages directly only to a subset
of the processors with which it is directly connected. Its directly connected
processors are called its neighbors. For communication with non-
neighbors, a routing algorithm is needed. Routing is the term used to de-
seribe the decision procedure by which a processor selects one of its
neighbors to send & message to an ultimate destination.



194

Chapter 8 Visual Language Generation

Programming Tools

In PEDS, various distributed tools are used to support implementing the
mentioned functionalities. They can cooperate with each other to create
sophisticated distributed programs. Such tools, which will be called work-
benches, include:

High Level Process Flow Diagram workbench (HPFD workbench) is
a process flow diagram providing a high level control structure over a
set of processes, whose details can be specified in other workbenches.
High Level Petri Net workbench (HLPN workbench} is a modeling
tool for specifying the high level behavior of a task using Petri net.
Each of its transitions can be connected to a workbench, with which
the transition specification can be provided.

Java workbench provides a platform for editing and compiling Java
programs.

Supporting workbench is used to specify a set of available software
resources and their relationships for mapping processes to processors.
Net workbench is for specifying the configuration of processors and
their interconnecting network (e.g. a distributed system).

Distributed workbench (Fig. 8.19) is the top level working environ-
ment that is used to configure all the other workbenches to form an
integrated distributed application,

Fig. 8.19. Distributed workbench



8.5 A Case Study: Generating A Distributed Programming Environment 195

A distributed program modeled with a set of HLPN workbenches and
HPFD workbenches is linked to a supporting workbench for resource
mapping, which in turn links to a net workbench for finding proper set of
processors. PEDS is, therefore, a hierarchical programming environment
supporting multiple programming paradigms.

8.5.2 Generation of PEDS Using VisPro

This section focuses on how to construct the PEDS hierarchical environ-
ment and implement interactions between different sub-visual languages
using the VisPro system.

Hierarchical Environment

An icon in the PEDS interface represents a window, called a workbench,
which can be opened and operated upon and can include child icons. The
main window in PEDS is an icon window, called management-win,
where various icons can be created and managed. Apart from the man-
agement-win, there are other windows: HLPN workbench, HPFD work-
bench, Java workbench, supporting workbench, net workbench and con-
figuration workbench.

In an icon window, each workbench represents a program (or a specifica-
tion). For example, when one wants to create a Petri net, he/she can create
an HLPN-icon, (ie., an icon for HLPN window). By opening the HLPN-
icon, one can create a Petri net. The HLPN-icon, thus, uniquely represents
the created Petri net.

Fig. 8.20 shows the hierarchical progranming environment of PEDS. It
has a main icon window in which some child icons have been created. A
child icon window and a HLPN workbench are also shown in the figure.
They can be triggered from icons in the main window.

Generating such a hierarchical programming environment is casy in the
VisPro system. First, one can create icon classes in the VO generator for
each of the workbenches. Then the control specifications for the fcons can
be created, which include

ND-has-node management-win management-icon
ND-has-node management-win HPFD-icon
ND-has-node management-win HLPN-icon
ND-has-node management-win Java-icon
ND-has-node management-win supporting-icon



196  Chapter 8 Visual Language Generation

ND-has-node management-win net-icon
ND-has-node management-win configure-icon

Fig. 8.20. PEDS hierarchical programming environment

It indicates that seven classes of icons, namely, management-icon,
HLPN-icon, HPFD-icon, Java-icon, supporting-icon, net-icon, and
configure-icon, are created in a management-win to include the seven
icons. Each of the child icons created in the management-win may open
a corresponding window (i.e. workbench). This can be specified as:

ND-has-workbench management-icon management-win
ND-has-workbench HLPN-icon HLPN-win



8.5 A Case Study: Generating A Distributed Programming Environment 197

It indicates that seven classes of icons, namely, management-icon,
HLPN-icon, HPFD-icon, Java-icon, supporting-icon, net-icon, and
configure-icon, are created in a management-win to include the seven
icons. Each of the child icons created in the managemeni-win may open
a corresponding window (i.e. workbench). This can be specified as:

ND-has-workbench management-icon management-win
ND-has-workbench HLPN-icon HLPN-win

The first item specifies that one can open a management-win on a man-
agement-icon object. Similarly, the second item indicates that a HLPN-
win can be opened through an HLPN-icon, where HLPN-win is the work-
bench class for HLPN, In addition, commands should be added to each of
the icon classes, such as an open operation. For example:

open open-management management-win

specifies a menu item named open-management which can be triggered
to open a management-win.

The VisPro framework is able to create a command system over each of
the icons according to the control specification. Icons and their commands
provide a mechanism for hierarchically specifying distributed programs.
For a hierarchical programming environment, interactions between graph
nodes and workbenches should also be created.

Construction of Interactions

A workbench wl may be used to specify a sub-task of another workbench
w by linking wi's own icon with a node of w. As an example, we use a
HLPN workbench to illustrate the interaction between different specifica-
tion levels, Fig. 8.21 shows the visual objects used in a HLPN workbench.
Normal objects in a Petri net are transitions and places. An annotation ob-
jecot can specify the annotation for a visual object by linking to the visual
object. To specify the data transfer mechanism, we construct two classes:
input port and output port. An input port can be used in a fransition to
specify the input information (i.e., name, type, etc.). When an input port
used independently, it represents an input from outside and is called a
global input port. Similarly, we have output ports and global output ports.
Anpotations can be given to an input port or an output port to specify its



198  Chapter 8 Visual Language Generation

type and name. The reference object in a transition is nsed to link to an-
other workbench for specifying the transition details.

global input port
global output port
place
input port
transition reference
output port
annotation

Fig. 8.21. Visval objects in a HLPN workbench

Fig. 8.22 shows two HLPN workbenches, where workbench (b) is used to
specify a transition in workbench (a). To transfer data correctly between
two workbenches, each port of the transition is annotated. In workbench
(b), two global input ports, annotated as int count and int work-id, have
the same annotations as the input ports of the transition. Input ports with
the same annotations are taken as the same port. Thus, data accepted in the
port annotated as int count in workbench (a) is accepted in the port anno-
tated as int count in workbench (b). How data is transferred in output ports
can be specified in a similar fashion.



199

ent

»

ing A Distributed Programming

.
x

8.5 A Cage Study

Ons

Fig. 8.22. Hierarchical specificati



200  Chapter 8 Visual Language Generation

To implement the data transfer mechanism, we associate a transition with
an Attribute concept if the transition refers to another workbench such that
its ports are specified as attributes in the concept. For example, the input
port labeled int count is specified as attribute("int count”, parameter),
where parameter is data transferred to the port. In the sub-workbench, a
global input port will check the Attribute concept and access the parameter
it needs. In this way, data are transferred between different workbenches

propetly.

After the user has specified the hierarchical programming environment of
PEDS and the interactions between the workbenches, the VisPro frame-
work is customized to PEDS.

This section has discussed how to generate PEDS using the VisPro system.
The management of the environment is described in the control specifica-
tion. On the other hand, interactions between different workbenches can be
specified in the annotations and with the A#tributes concept. PEDS, a hier-
archical programming environment with multiple paradigms, thus, is cre-
ated by customizing the VisPro framework through specifications.

8.6 Summary

This chapter has presented a generic visual language generation environ-
ment with a hierarchical specification structure and multiple programming
paradigms. To ease the development of VPLs, we have proposed a VisPro
design model that divides any VPE into independent functional modules
and defines a protocol supporting the interaction between the modules. The
VisPro toolset with its framework has been developed based on the above
design model, which can be used to generate diagrammatic VPLs. The
toolset consists of three specification tools, each of which facilitates one
aspect of the construction of VPLs in the VisPro frameworle. These tools
are visual languages themselves so that the target language properties and
the domain specifications can be visually described by direct manipulation.

The VPL construction process using the VisPro toolset is similar to the
textual language construction process using Lex/Yace. The process can be
described as customization, i.e. the VisPro framework can be customized
to any target visual language with a set of domain specifications provided
through the tools. The VisPro framework and the specification tools to-
gether provide a complete support for the VPL generation. They can be
used to generate a wide range of visual programming environments easily.



8.7 Related Work 201

8.7 Related Work

Researchers have developed some high level tools to ease the implementa-
tion of visual languages and visval programming environments. These
tools can greatly reduce the effort of developing visual languages, although
they focus mainly on the construction of user interface aspects of VPLs,
Example tools include SIL-ICON, VLCC, Escalante, Glide, SPARGEN,
DiaGen, PROGRES, and Fujaba, as described below.

Early tools such as SIL-ICON (Chang et al. 1989) and VLCC (Costagliola
et al. 1995) use parameterizable frameworks to support VPL generation.
They are easy to use since generating target VPLs is simply done by cus-
tomizing the predefined frameworks through domain specifications. SIL-
ICON (Chang et al. 1989) has a complete functionality for the construction
of icon-based visual languages. The SIL-ICON compiler is based on the
generalized icon theory and thus is limited to iconic VPLs. VLCC (Co-
stagliola et al. 1995) assists the user with tools for defining a language’s
syntax, semantics, and graphical objects. It produces an integrated envi-
ronment with an editor and a compiler for the defined language. VLCC
uses positional grammars as the underlying theory and pure images as sin-
gle-level visual objects.

SPARGEN (Golin and Magliery 1993) is a visual language compiler gen-
erator. lis generated parser supports additional action routines written in
C++, thus allows complicated actions to be specified in the form of rules,
SPARGEN does not support the generation of a visual programming envi-
ronment.

Escalante supports the construction of applications for visual languages
that are based on object-relationship abstractions (McWhirter and Nutt
1994). It provides mechanisms for iterative design, rapid prototyping and
generation of visual language applications within an integrated environ-
ment,

Glide (Kleyn 1993) provides a BNF-like langnage for specifying the logi-
cal structure and the user interface of a VPL. The user specifies a graph
data structure, associates graphical attributes to the data structure, and then
desribes a set of permissible changes to the data structure. Glide constructs
a VPL based on the specified data structure. It can also reason about the
VPL through its logic programming rules. Since the Glide grammar is uged
for creating the underlying data structure in the form of links between
nodes, it is unsuited for specifying the syntax of 3 VPL grammar.



202 Chapter 8 Visual Language Generation

DiaGen (Minas and Viehstaedt 1995; Minas 2002) is a tool for producing
diagram editors, which can be used to construct visual programs. DiaGen
uses hypergraphs to model various types of diagrams, with a hyperedge
graph grammar that can be parsed efficiently. It recognizes syntactic cor-
rections of graphs during the editing process. DiaGen supports both free-
hand and syntax-directed editing modes, which provides a flexibility for
users,

PROGRES (Rekers and Schiier 1996; Schiirr et al. 95; Rekers and Schiirr
1997} is a strongly typed multi-paradigm language with a well-defined
context-free syntax, type checking rules and semantics. The graph rewrit-
ing rules in PROGRES provides a powerful formalism for graph transfor-
mations and are particularly suitable for specifying semantics of VPLs
whose underlying structures are node-edge graphs, PROGRES can gener-
ate both programming environments and parsing algorithms. It does not
use any existing programming language (e.g. C, C++, or Java) to specify
the actions of its rules directly. Instead, it uses a simple textual language
which is a part of the system. PROGRES uses layered graph grammars to
specify VPLs. The parsing algorithm of layered graph grammars requires
exponential time, as analyzed in Chapter 2.

The Atiributed Graph Grammar system (AGG) (Ermel et al. 1999) is a
visual programming environment based on a hybrid programming lan-
guage, i.e. the AGG language, that integrates graph transformation rules
with Java. An AGG program consists of a set of production rules attributed
by Java expressions so that the standard Java library can be used to com-
pute objects” attributes.

VLPEG (Fermicei et al. 2001) can automatically generate a visual language
environment consisting of a graphical editor, and a lexical, syntactic and
semantic analyzer. It is based on the context-free Symbol Relation Gram-
mar model (Ferrucci et al. 1996), that can specify the relationships among
the symbaols in a visual sentence at a higher level of abstraction than that in
RGGs. Similar to VisPro, VLPEG supports incremental development of
visual programming languages through rapid prototyping.

Fujaba (2005) provides a UML-like CASE tool for round-trip engineering,
It supports code generation from class diagrams, activity diagrams, state
diagrams, and collaboration diagrams, as well as reverse engineering from
Java code to UML diagrams (Maier and Ziindorf 2003). Graph transforma-
tion in Fujaba iz used to specify the behavioral aspects of modeling sys-
tems through story diagrams (Fischer et al. 1998), a graph rewriting lan-
guage that combines several UML diagrams.



Chapter 9 Conclusions and Future Perspective

9.1 Conclusions

The book has described visual programming languages and their applica-
tions in several important domains. We started with a general introduction
to the concepts of visual langnages and presented a theory behind such
languages, i.e. a context-sensitive graph grammar formalism, known as the
reserved graph grammar (RGG). The RGG was based but improved on the
LGG (Rekers and Schiirr 1997). By keeping the layer decomposition
mechanism of the LGG to terminate parsing in finite steps, the RGG uses a
marking technique with an embedding rule to solve the embedding prob-
lem. The rule ensures that the application of a produetion in the graph re-
writing process would not create dangling edges. By ensuring selection-
free productions in the RGG, sometimes called confluent graph grammars
elsewhere, a selection-free parsing algorithm (SFPA) attempts only one
parsing path and thus achieves a polynomial time complexity. It is difficult
to estimate how many types of diagrams could be specified by selection-
free productions. Having applied RGGs to many different application do-
mains, we have not come across a diagram formalism that cannot be speci-
fied by selection-free productions.

By extending the RGG with spatial specification capability and a more ef-
ficient parser, we obtained the spatial graph grammar (SGG) formalism.
The SGG formalism was motivated due to the graphical nature of visual
languages - the spatial information not only contributes to the representa-
tion, but also intuitively conveys structural and semantic constraints. For
example, an order over a set of objects can be directly specified according
to their spatial locations (e.g. the left object has a smaller index than the
right). In a SGG, both the connectivity and spatial relationships construct
the pre-condition of a graph transformation. This sets a solid foundation
for visual and spatial reasoning, with a great potential for practical applica-
tions such as geographical information systems.



204 Chapter 9 Conclusions and Future Perspective

The subsequent four chapters have described the applications of visual
languages and graph grammars in multimedia authoring and presentation,
data interoperation, software engineering, and Web development.

The diversity of the multimedia devices and the advance of multimedia
technology demand multimedia presentations to be intelligently adaptive
to different viewing contexts. With a graph grammar based authoring ap-
proach, a grammar functions as a mapping from a presentation of a style to
a physical layout. The syntactical definition in the grammar captures the
structure of any multimedia document and the parser performs automatic
validation on the document. Rather than assigning every object with an ab-
solute co-ordinate value, spatial graph grammars specify how the docu-
ment looks like by defining spatial relations in the grammar. Automatic
presentation layout could also be performed through the parsing process.

To support data interoperation at different levels of abstraction, we have
proposed a framework with a uniform graphical representation of data in-
stances and models. Operations on data instances and models could also be
represented visually using a set of graph transformation rules. The frame-
work graphically defines the syntax and translation rules for data instances,
and high-level operators for schemas and models. The framework also
provides an intuitive interface for users to customize the operators. The
presented concepts represent a step forward to antomatic data interopers-
tion through generic visual operators, reusable graphical interfaces, and
customizable declarative rules.

A language with a simple and well-understood syntax, possibly with a
graphical representation, benefits the communication of software designs
between different designers. Using graphs to interpret graphs, graph trans-
formation, which offers a promising formal approach to modeling architec-
toral evolutions and, dynamic behaviors of software systems. We have pre-
sented a grammatical approach to the specification and evolution of
software architectures. The validation of structural integrity through syn-
tactic checking is made possible by the underlying grammar. Moreover,
such an approach is open and interoperable with other formal approaches.
For example, by viewing evolution as transitions of system states, the
model checking technique applied in the large and realistic systems (Baresi
et al. 2003) can be incorporated,

Web engineering and development, including design, search, navigation,
and maintenance, has been a central focus of the Internet technology.
Graphical support for Web engineering that hides the coding of mark-up
languages would expose and ease the activities of Web development to
the general public. We advocate a uniform graphical view throughout the



9.2 Future Perspective 205

design, navigation, reuse, and maintenance ¢ycle of Web site development.
The structured design supported and validated by the Web graph grammar
would benefit the search and pavigation, and thus promote the semantic
Web, It also ephances the reusability and maintainability of many legacy
Web systems.

Fundamental to the power and applicability of visual languages in many
application domains is the generative technology. The major advantages of
the grammatical approach with the generative technology can be summa-
rized as the following:

s The meta-tool capability allows any domain-specific visual languages
(DSVLs) to be automatically generated according to the specification
of the domain characteristics. A DSVL can thus be readily created,
modified and enhanced whenever the domain needs arise. Thus an it-
erative and incremental process is supported.

s Any non-disposable software profotype conforming to the specifica-
tions can be visually constructed through direct manipulation by a do-
main programmer who needs not to know the detailed specification.
Once the prototype is confirmed to meet the domain requirements, the
full scale prototype program can be geperated.

* Verification is naturally supported. The generated DSVL environment
includes a syntax-directed visual editor that is capable of syntactic
checking and fonction verification of any prototype constructed in the
DSVL.

9.2 Future Perspective

Vigual programming languages have been investigated for nearly 25 years
as overviewed in Chapter 1. Visual language theories and their applica-
tions have been significantly advanced over the 25 years. As discussed in
Chapter 1, the general concept of visual languages has been used long be-
fore the invention of the visual languages for computer programming, i.e.
visual programming languages (VPLs). The trend is to move back to the
more general sense of visual languages for various types of applications,
rather than merely for the programming purpose. Visual modeling has en-
tered the main stream of software engineering, largely due to the success
of UML.

Considering the future of diagrammatical visual programming langnages,
three major hurdles need to be overcome as summarized below,



206  Chapter 9 Conclusions and Future Perspective

* The inefficient compilation due to high dimensional search and
match of sub-graphs. More effective graph grammars with efficient
parsers need to be developed, which may be the most challenging is-
sue for all VPL researchers. The expressiveness of a graph grammar
appears to always work against the efficiency of the parser. Spatial
specification assisting narrowing down the search space represents an
interesting attempt to gain both efficiency and expressiveness.

¢ The lack of effective yet intuitive programming metaphors sup-
ported by efficient user interactions, Research in human factors in
visual programming has been at its early stage. Commonly accepted
visual metaphors may be used as visnal language primitives to sup-
port user-friendly interactions. Empirical studies on the effectiveness
and usability of such visual metaphors need to be conducted. This is
largely an interdisciplinary research involving not only computer sci-
ence, but also semiotics, cognition science, and ergonomics,

¢ Less scalable than textual programming due to the more use of
the screen estate, To meet the new challenges multi-dimensional
visual programming, particularly in distributed and collaborative
computing environments, we need investigate visual programming in
the large (Chang et al. 1999), This is also related to the effective use
of wvisual metaphors. The capability of hierarchical yet graphical
specifications through grammar rules is indispensable in a scalable
visual programming environment, One solution is to introduce hierar-
chical views (Pietriga et al. 2001). Another is to apply the grammar
replacement process to support graph expansion and shrinking, which
would however limit to context-free graph grammars.

Research in VPLs will continue in these directions, together with other is-
sues such as testing, tracing, and comprehension. Also, more work needs
to be done to enrich the grammar formalism and enhance the event-
handling capability. We describe some specific future projects that are
worth pursuing.

Designing dynamic user interfaces to support interactive communication
for new applications, especially mobile devices, is a research and design
problem. In dynamic capture, access, and anthoring of Web and multime-
dia presentations, the attributes of some media elements may be defined in
terms of those of other media elements, or in relation to the atiributes of
the viewing environment. Attributed grammars that are capable of adapt-
ing to multiple simultaneous changes offer a promising solution.



9.2 Future Perspective 207

We may consider a visual language for multimedia authoring and presenta-
tion as a multidimensional language that has objects of different media
types as its primitives and spatial and temporal operators as its operators
(Chang 2000). A future direction of investigation is to add the time dimen-
sion to the design of multimedia presentations. Temporal specifications de-
termine the sequence of presentation. Allen presented some common tem-
poral relations such as during, before, meet relations (Allen 1983), which
are potentially adaptable to the grammar as conditional attributes. Exten-
sive research has been devoted to the temporal aspects of multimedia ay-
thoring and presentations. We plan to investigate the combined use of
temporal and spatial specifications and explore the full power of the
grammatical approach.

Writing production rules and their action codes for any graph grammar is
not an casy task, even for a design expert with computer science training,
since it requires a good command of the grammar formalism, It has been
the author’s goal to partially automate the production authoring tool to cre-
ate part of the rules upon layout requirements. Using an induction engine is
one solution that can simplify the grammar construction process. Often,
samples of a visual language are processed to automatically construct a
graph grammar, at least in part (Ates et al. 2006). The induced graph
grammars can he further modified by the user.

Most grammar induction methods are based on inductive logic program-
ming (ILP} which represents data in first-order logic. An induction process
is performed on the logic to produce a learned set, or generalization, of
rules on the data. Inducing context-free graph grammars using ILP is a
promising approach. ILP-based induction systems, such as SubdueGL
{Jonyer 2003) and its successor (Kukluk et al. 2006), have produced some
encouraging results. Automatic induction of context-sensitive graph gram-
mars such as RGGs is a challenging research direction.

The ability of inducing RGGs will not only ease the grammar writing ef-
forts in various applications such as those discussed in this book, but also
empower more advanced applications. For example, in model-driven
architectures, we can define the behavioral semantics of state diagrams
grammatically, Instead of manually designing a graph grammar to formal-
ize the state hierarchy, we will be able to automatically derive the
graph grammar from a state machine. In order to interpret state transitions
of simple and composite states, graph grammars automatically induced
from state machines could be used to validate, recognize and generate ac-
tive state configurations. Such a grammar induction mechanism and its



208  Chapter 9 Conclusions and Future Perspective

validation and recognition capability would facilitate the automated design
of model-driven architectures,

Apart from software engineering, visual languages and their underlying
grammar formalisms will continue to be applied to more application do-
mains, including the deployment of senor networks, scientific modeling
and simulation, round-irip engineering, data interoperation, resource man-
agement, digital design, and pattern recognition.



Bibliography

Abiteboul S, Cluet S, Milo T (1997) Correspondence and Translation for
Heterogeneous Data. Proc. Int. Conf. on Data Theory (ICDT)

Allen JF (1983) Maintaining Knowledge about Temporal Intervals.
Communications of the ACM. 26:832 — 843

Allen R, Garlan D (1994) Formalizing Architectural Connection. Proc.
16" Int. Conf. on Software Engineering. pp 71-80

Allen R, Garlan D (1997) A Formal Basis for Architectural Connection,
ACM Transaction on Software Engineering and Methodology 6:213-
249

Apanda A, Srinivasan B (1991) Distributed Computing Systems: Concepis
and Structures. IEEE CS Press, Los Alamitos, California

Andre E, Finkler W, Graf W, Rist T, Schauder A, Wahlster W (1993) WIP:
The Automatic Synthesis of Multimodal Presentations. In: MayBury M
(Ed) Intelligent Multimedia Interfuce. AAAI Press’MIT Press,
Cambridge, MA, pp 75-93

Anupam V, Freire J, Kumar B, Lieuwen D (2000) Automating Web
Navigation with the WebVCR. Proc. 9" Int. World Wide Web Conf.
Aumsterdam, Netherlands

Ates K, Kukluk J, Holder L, Cook D, Zhang K (2006) Graph Grammar
Induction on Structural Data for Visual Programming. Proc. 18* IEEE
Int. Conf. on Tools with Artificial Intelligence (ICTAI'06). Washington
D.C,USA

Atzeni P, Torlone R (1995) Schema Translation Between Heterogencous
Data Models in a Lattice Framework. Proc.6th IFIP TC-2 Working
Conf. on Data Semantics (DS-6). Atlanta, Georgia

Bardoh! R, Taentzer G, Minas M, Schiirr A (1999) Application of Graph
Transformation to Visual Languages. In: Ehrig H, Engels G, Kreowski
HJ, Rozenberg G (Eds) Handbook on Graph Grammars and
Computing by Graph Transformation: Applications, Languages and
Tools. Vol.2, World Scientific, pp 105-180

Baresi L, Heckel R, Théne S, Varré D (2003) Modeling and Validation of
Service-Oriented  Architectures: Application vs. Style. Proc.
ESEC/FSE’'03. pp 68-77

Bederson B, Hollan I, Steward I, Vick D, Ring L, Grose E, Forsythe C



210 Bibliography

(1998) A Zooming Web Browser. In: Ratner, Grose, Forsythe (Eds)
Human Factors in Web Development. Lawrence Erlbaum Assoc. pp
255-266

Bernstein PA (2003) Applying Model Management to Classical Meta Data
Problems. Prac. 2003 CIDR Conf.. Asilomar, CA, pp 209-220

Bernstein PA, Halevy A, Pottinger RA (20000 A Vision for Management
of Complex Models. SIGMOD Record 29:55-63

Bernstein PA, Giunchiglia F, Kementsietsidis A, Serafini IML, Zaihrayeu
I (2002) Data Management for Peer-to-Peer Computing: A Vision,
Proc. 5th Int. Workshop on the Web and Databases. Madison,
Wisconsin, pp 89-94

Berry G, Boudol G (1992) The Chemical Abstract Machine. Theoretical
Computer Science 96:217-248

Bézivin J, Breton E, Dupé G, Valduriez P (2003) The ATL
Transformation-based Model Management Framework. Research
Report No.03.08, Université de Nantes, Sep. 2003

Bjork S, Redstrom J, Ljungstrand P, Holmquist LE (2000) PowerView -
Using Information Links and Information Views to Navigate and
Visualize Information on Small Displays. Proc. HUC 2000. pp 46-62

Blostein I, Grbavee A (1997) Recognition of Mathematical Notation. In:
Bunke H, Wang P (Eds) Handbook of Character Recognition and
Document Image Analysis, World Scientific, pp 557-582

Blostein D, Schiirr A (1998) Visual Modeling and Programming with
Graph Transformations. Tutorial at 14th IEEE Symposium on Visual
Languages. Halifax, Canada

Booch G, Rumbaugh I, Jacobson I (1999) The Unified Modeling Language
User Guide. Addison-Wesley.

Boruing A, Lin RK, K. Marriott K (2000) Constraint-based Document
Layout for the Web. Maltimedia Systems 8:177-189

Bottoni P, Gran A (2004) A Suite of Metamodels as a Basis for a
Classification of Visual Languages. Proc. 2004 IEEE Symposium on
Visual Languages. Rome, Italy, Sep. 27-30, pp 83-90

Bottoni P, Levialdi 5 (2005) Resource-Based Models of Visual Interaction:
Understanding Errors. Proc. 2005 IEEE Symposium on Visual
Languages and Human-Centric Computing. Dallas, USA, Sep. 20-24,
pp 137-144

Bottoni P, Taentzer G, Schilr A (2000) Efficient Parsing of Visual
Languages Based on Critical Pair Analysis and Contextual Layered
Graph Transformation. Prec. 2000 IEEE Symposium on Visual
Languages. Seattle, USA, pp 59-60

Bowers 8, Delcambre L (2002) A Generic Representation for Exploiting
Model-Based Information, ETAI Journal, 6



Bibliography 211

Bradbury JS, Dingel J (2003) Evaluating and Improving the Automatic
Analysis of Implicit Invocation Systems. Proc. ESEC/FSE’03. pp 78-
87

Brandenburg FJ (1988) On Polynomial Time Graph Grammars. Proc. 5th
Conf. on Theoretical Aspects of Computer Science. LNCS 294,
Springer-Verlag, pp 227-236

Brandenburg FJ (1995) Designing Graph Drawings by Layout Graph
Grammars, Proc. Int. Workshop on Graph Drawing (GD’94), LNCS
894, Springer, pp 416-428

Brown PC (1997) Satisfying the Graphical Requirements of Visual
Languages in the DV-Centro Framework. Proc. 13th IEEE Symposium
on Visual Languages. Capri, Italy, Sep. 23-26, pp 84-91

Bulterman DCA, Rutledge L (2004) SMIL 2.0 - Interactive Multimedia for
Web and Mobile Devices. Springer

Buneman P, Davidson SB, Kosky A (1992) Theoretical Aspects of
Schema Merging. Proc. 3rd Int. Conf. on Extending Database
Technology. Vienna, Austria, Mar. 1992. pp 152-167

Bunke H, Haller B (1989} A Parser for Context Free Plex Grammars. Proc.
15th Int. Workshaop on Graph-Theoretic Concepts in Computer Science.
LNCS 411, pp 136-150

Burnett MM (1994) Seven Programming Language Issues. In: Bumett
MM, Goldberg A, Lewis T (Eds) Visual Object-Oriented
Programming. Manning Publishing Co., pp 161-181

Bummett MM (1999) Visual Programming. In: Webster JG (Ed)
Encyclopedia of Eletrical and Eletronics Engineering. John Wiley &
Sons Ine., New York

Bumett MM (zm}s) Vlsua.l L&ngu&ge Research  Bibliography.

Bumei:t m&, Gmldbarg A Lawm T {19?5} (Eds) Visual Object-Oriented
Programming: Concepts and Environments. Prentice-Hall/Manning
Burnett MM, Gottfried (1998) Graphical Definitions: Expanding
Spreadsheet Languages Through Direct Manipulation and Gestures.
ACM Transactions on Computer-Human Intergction 5:1-33

Cao J, Fermnando F, Zhang K (1995) Dig: A Graph-Baged Construct for
Programming Distributed Systems. Proc. 2nd Int. Conf. on High
Performance Computing. New Delhi, pp 417-422

Casanova M, Tucherman L, Lima M, Rodriguez N, Soares L (1991} The
Mested Context Model for Hyperdocuments. Proc. Hypertext. San
Antonio, USA, pp 193-201

Castano S, Antonellis VD (1999} A Schema Anpalysis and Reconciliation
Tool Environment for Heterogencous Databases. Proc. Int. Database
Engineering and Appplication Symposium. pp 53-62



212 Bibliography

Ceri 8, Comai S, Damiani E, Fraternali P, Paraboschi $, Tancia L (1999)
XML-GL: A Graphical Language for Querying and Representing
XML Documents. Proc. 8" Int. World Wide Web Conf.

Ceri S, Fraternali P, Bongio A (2000) Web Modeling Language (WebML):
A Modeling Language for Designing Web Sites. Proc. 9" Int. World
Wide Web Conf.. Amsterdam, Netherlands

Chan F, Cao J, Chan ATS, Zhang K (2005) Visual Programming Support
for Graph-Oriented Parallel/Distributed Processing, Software ~
Practice and Experience 35:1409-1439

Chang SK (1971) Picture Processing Grammar and Its Applications.
Information Sciences 3:121-148

Chang SK (1987) Visnal Languages: A Tworial and Survey. IEEE
Software 4:29-39

Chang SK (2000} Multimedia Saftware Engineering. Kluwer Academic
Publishers

Chang SK, Burnett MM, Levialdi 5, Marriont K, Pfeiffer JJ, Tanimoto SL
(1999) The Future of Visual Languages. Proc, 15th IEEE Symposium
on Visual Languages. Tokyo, Japan, pp 58-61

Chang SK, Ichikawa T, Ligomenides PA (1986) (Eds) Visual Languages.
Plenum, New York

Chang SK, Tauber MJ, Yu B, Yu JS (1989) A Visual Language Compiler.
IEEE Trans. on Sofiware Engineering 15:506-525

Chang SK, Tortora G, Yu B, Guercio A (1987) Icon Purity — Towards a
Formal Definition of Icons. Int. Jouwrnal of Pattern Recognition and
Artificial Intelligence 1:377-392

Chen L., Jamil HM (2003) On Using Remote User Defined Punctions as
Wrappers for Biological Database Interoperability. Int. J. Cooperative
Info, Systems 12: 161-195

Chok S, Marriott K (1995) Parsing Visual Langunages. Proc. 18th
Australasian Computer Science Conference. Glenolg, South Australia,
pp 90-98

Clementini E, Felice PD, Qosterom PV (1993) A Small Set of Formal
Topological Relationships for End-User Interaction. Proc. 3™ Int.
Symp. on Advances in Spatial Databases. pp 277-295

Cluet 8, Delobel C, Simeon J, Smaga K (1998) Your Mediators Need Data
Conversion! ACM SIGMOD. pp 177-188

Coda F, Ghezzi C, Vigoa G, Garzotto F (1998) Towards a Software
Engincering Approach to Web Site Development. Proc. 9" Int.
Workshop on Saftware Specification and Design. JEEE Press

Conger SA, R. O. Mason RO (1998) Planning and Designing Effective
Web Sites. Course Technology. Cambridge, MA

Corradini A, Montanari U, Rossi F (1996) Graph Processes. Fundamenta
Informaticae 26:241-265



Bibliography 213

Costagliola G, Deufemia V, Risi M (2006) A Multi-layer Parsing Strategy
for On-line Recognition of Hand-drawn Diagrams. Proc. 2006 IEEE
Svmposium on Visual Languages ond Human-Centric Coomputing.
Brighton, UK, pp 103110

Costaglioga G, Orefice S, Polese G, Tortora G, Tucci M (1993) Automatic
parser generation for pictorial languages. Proc. 1993 IEEE Symposium
on Visual Languages. Bergen, Norway

Costagliola G, Tortora G, Orefice S, Lucia AD (1995) Automatic
Generation of Visual Programming Environments, IEEE Computer 28:
56-66

Cox P, Pietrzykowski T (1985) Advanced Programming Aids in
PROGRAPH. Proc. 1985 ACM SIGSMALL Symposium on Small
Systems. Danvers, USA, pp 27-33

Cruz IF, Averbuch M, Lucas WT, Radzyminski M, Zhang K (1997)
Delaunay: A Database Visualization System. Proc. ACM SIGMOD Int,
Conf. on Management of Data. pp 510-513

Cruz IF, Lucas WT (1997) A Visual Approach to Multimedia Querying
and Presentation. Proc. ACM Multimedia’97. Seattle, USA, 8-14 Nov.
pp 8-14

Davidson A, Fuchs M, Hedin M, Jain M, Koistinen J, Lloyd C, Maloney
M, Schwarzhof K (1999) Schema for Object-Oriented XML 2.0. W3C
Document

Dean TR, Cordy JR (1995} A Syntactic Theory of Software Architecture.
1EEE Transactions on Software Engineering 21:302-313

Di Battista G, Eades P, Tamassia R, Tollis IG (1999) Graph Drawing:
Algorithms for the Visualization of Graphs. Prentice Hall, Englewood
Cliffs, NJ

Doemel P (1994) WebMap —~ A Graphical Hypertext Navigation Tool.
Prac. 2 Int. World Wide Web Conf.. USA, pp 785-789

Dong J, Zhang K (2003) Design Pattern Compositions in UML. In: Zhang
K (Ed) Software Visualization — from Theory to Practice. Kluwer
Academic Publishers, pp 287- 208

Drewes F, Hoffimann B, Janssens D, Minas M, Van Eetvenlde N (2006)
Adaptive Star Grammars. Proc. Int, Conf. on Graph Transformation
(ICGT’06). Natal, Brazil

Eades P (1984) A Heuristic for Graph Drawing, Congressus Numerantium
42:149-160

Eades P, Zhang K (1996) Software Visualization. World Scientific
Publishing Co., Singapore

Ehrig H, Heckel R, Korff M, Liwe M, Ribeiro L, Wagner A, Corradini A
(1997) Algebraic Approach to Graph Transformation IE: Single
Pushout Approach and Comparison with Double Pushout Approach. In:



214  Bibliography

Rozenberg G (1997) (Bd) Handbook on Graph Grammars ond
Computing by Graph Transformation: Foundations. Vol.l, World
Scientific, pp 247-312

Engelfriet J, Rozenberg G (1997) Node Replacement Graph Grammars, In:
Rozenberg G (Ed.) Handbook on Graph Grammars and Computing by
Graph Transformation: Foundations. Yol.1, World Scientific, 1-94

Engels G, Heckel R, Kiister JM, Groenewegen L (2002) Consistency-
Preserving Model Evolution Through Transformations. Proc. UML 02,
LNCS 2460, Springer, pp 212-227

Ermel C, Rudolf M, Taentzer G (1999) The AGG Approach: Language
and Environment, In: Ehrig H, Engels G, Kreowski HJ, Rozenburg G
(Eds) Handbook of Graph Grammars and Computing by Graph
Transformation: Applications, Languages and Tools. Vol.2, pp 551-
604

Erwig M (2000) A Visual Language for XML. Proc. 16" IEEE Symposium
on Visual Languages. Seattle, USA, 10-13 September, pp 47-54

Feiner S, McKeown K (1993) Automating the Generation of Coordinated
Multimedia Explanations. In: MayBury M (Ed) Intelligent Multimedia
Interface. AAAI Press/MIT Press, Cambridge, MA, pp 117-138

Ferrucci F, Pacini G, Satta G, Sessa M, Tortora G, Tucci M, Vitellio G
(1996) Symbol-Relation Grammars: A Formalism for Graphical
Languages. Information and Computation 131:1-46

Ferrucci F, Tortora G, Tucci M, Vitellio G (1994) A predictive parser for
visual languages specified by relational grammars, Proc. 10th IEEE
Svmposium on Visual Languoges. St, Louis, USA, pp 245-252

Ferrucci F, Tortora G, Tucci M, Vitellio G (2001) A System for Rapid
Prototyping of Viaual Langnage Environments. Proc. of IEEE
Symposia on Human-Centric Computing. Siresa, Ialy, Sep. 5-7, pp
382-389

Fischer T, Niere J, Torunski L, Zuindorf A (1998) Story Diagrams: A New
Graph Rewrite Language Based on the Unifed Modeling Language and
Java. Proc. Theory and Application to Graph Transformations. LNCS
1764, pp 296-309

Frank AU (1996) Qualitative Spatial Reasoning: Cardinal Directions as an
Example. Int. J. Geographical Information Science 10:269-290

Frecon E, Smith G (1998) WebPATH - A Three Dimensional Web
History. IEEE Symp. Information Visualization. N, Carolina

Freire J, Kumar B, Lieuwen D (2001) WebViews: Accessing Personalized
Web Content and Services. Proc. 10" Int. World Wide Web Conf.
Hong Kong, China

Fujaba (2005) hitp:/fwww fujaba.de

Furnas G (1986) Generalized Fisheye Views. Proc. CHI'86, Boston



Bibliography 215

Gamma E, Helm R, Johmson R, Vlissides J (1995) Design Patterns,
Elements of Reusable Object-Oriented Sofiware. Addison-Wesley

Garlan D, Allen R, Ockerbloom J (1994) Exploiting Styles in Architectural
Design Environments. Proc. 2™ ACM SIGSOFT Symposium on
Foundations of software engineering. pp 175-188

Garlan D, Cheng SW, Kompanek AJ (2002) Reconciling the Needs of
Architectural Description With Object-modeling Notations. Science of
Computer Programming 44:23-49

Glinert EP (1990a) Visual Programming Environments: Paradigms and
Systems. IEEE CS Press

Glinert EP (1990b) Visugl Programming Environments: Applications and
Issues. JEEE CS Press

Goldberg A, Burnett MM, Lewis T (1994) What Is Visual Object-Oriented
Programming? In: Burnett MM, Goldberg A, Lewis T (Bds) Visual
Object-Oriented Programming. Manning Publications Co.

Golin EJ (1991) A Method for the Specification and Parsing of Visual
Languages. Ph.D. Thesis, Brown University

Golin EJ, Magliery T (1993) A Compiler Generator for Visual Languages.
Proc. Sth [EEE Symposium on Visual Languages. Bergen, Norway,
August 1993, IEEE CS Press, pp.314-323.

Gémez J, Cachero C, Pastor O (2001) Conceptual Modeling of Device-
Independent Web Applications. IEEE Multimedia, pp 26-39

Graham § (1987) Programming Languages and Systems — Introduction to
Part I. ACM Turing Award Lectures — The First Twenty Years 1966-
1985. ACM Press, pp 1

Grimshaw A, Weissman J, West E, Loyot E (1994) Metasystems: An
Approach Combining Parallel Processing and Heterogeneous
Distributed Computing Systems. Jowrnal of Parallel and Distributed
Computing 21:257-270

Guan SU, Yu H-Y, Yang J-S (1998) A Prioritized Petri Net Mode] and its
Application in Distributed Multimedia Systems. IEEE Transactions on
Computers 47:477-481

Habel A, Heckel R, Taentzer G (1996) Graph Grammars with Negative
Application Conditions. Fundamenta Informaticsae 26:287-313

Halevy A, Ives Z, Suciu D, Tatarinov I (2003a) Schema Mediation in Peer Data
Management Systems. Proc. 2002 Int. Conf. Data Engineering. pp 505-518

Halevy A, Ives Z, Tatarinov I, Mork P (2003b) Piazza: Data Management
Infrastructure for Semantic-Web Applications, Proc. 2003 Int. World
Wide Web Conf.. Budapest, Hungary, pp 556-567

Herman I, Melancon G, Marshall MS (2000} Graph Visualization and
Navigation in Information Visualization. JEEE Transactions on
Visualization and Computer Graphics 6:24-43



216  Bibliography

Hernéandez D, Clementini E, Felice PD (1995) Qualitative Distance. Proc.
Spatial Information Theory: a Theoretical Basis for GIS. pp 45-58

Hinton S (1998) From Home Page to Home Site: Effective Web Resource
Discovery at the ANU. Proc. 7th Int’l World Wide Web Conf..
Brisbane, Australia

Hirakawa M, Nishimura Y, Kado M, and Ichikawa T (1991) Interpretation
of icon overlapping in iconic programming, Proc. 7th IEEE Workshop
on Visual Languages. Kobe, Japan, pp 254-259

Huang ML, Eades P, Cohen RF (1998a) WebOFDAYV - Navigating and
Visualizing the Web On-line with Animated Context Swapping. Proc.
7th Int, World Wide Web Conf., Brisbane, Australia

Huang ML, Eades P, Wang I (1998b) On-line Animated Visualization of
Huge Graphs Using a Modified Spring Algorithm, Journal of Visual
Languages and Computing 9:623-645

Inverardi P, Wolf AL (1995) Formal Specification and Analysis of
Software Architectures Using the Chemical Abstract Machine Model.
IEEE Transactions on Software Engineering 21:373-386

Ishizaki S (2003} Improvisational Design — Continuous Responsive Design
Communication. MIT Press

Jahnke JH, Zudoef A (1998) Using Graph Grammars for Building the
Varlet Database Reverse Engineering Environment. Technical Report
tr=i-98-201, University of Paderborn

Jonyer I (2003) Context-Free Graph Grammar Induction Based on the
Minimum Description Length Principle. Ph.D. Thesis. The University
of Texas at Arlington

Karsai G, Sztipanovits J, Ledeczi A, Bapty T (2003) Model-Integrated
Development of Embedded Software. Proceedings of the IEEE
91:145-164

Kaul M (1982) Parsing of Graphs in Linear Time. Proc. 2 Int. Workshop
on Graph Grammars and Their Application to Computer Science.
LNCS 153, pp 206-218

Keller RK, Schauer R (1998) Design Components: Towards Software
Composition at the Design Level. Proc. 20" Int. Conf. on Sofiware
Engineering. pp 302-311

Klapsing R, Neumann G, Conen W (2001) Semantics in Web Engineering:
Applying the Resource Description Framework. IEEE Multimedia, pp
62-68

Kleyn M (1995) A High Level Language for Specifying Graph-Based
Langunages and Their Programming Environments. Ph.D. Thesis, The
University of Texas at Austin

Kong 1 (2005) Visual Programming Langunages and Applications. PA.D.



Bibliography 217

Thesis, Department of Coroputer Science, The University of Texas at
Dallas

Kong I, Zhang K (2004a) Parsing Spatial Graph Grammars. Proc. 2004
IEEE Symposium on  Visual Languages and Human-Centric
Computing. Rome, Italy, pp 99-101

Kong I, Zhang K (2004b) On a Spatial Graph Grammar Formalism. Proc.
2004 IEEE Symposium on Visual Languages and Human-Centric
Computing. Rome, ltaly, pp 102-104

Kong I, Zhang K, Dong 1, Song GL. (2003) A Graph Grammar Approach
to Software Architecture Verification and Transformation. Proc. 27th
Annual Int.  Computer Software and Applications Conf.
(COMPSAC’03). Dallas, USA, pp 492-499

Kong I, Zhang K, Dong J, Song GL. (2005) A Generative Style-driven
Framework for Software Architecture Design. Proc. 29" Annual
IEEE/NASA Software Engineering Workshop (SEW-29). Greenbelt,
MD, USA, pp 173-182

Kong I, Zhang K, Zeng X (2006) Spatial Graph Grammars for Graphical
User Interfaces. ACM Transactions on Computer-Human Interaction
13:268-307

Krasner GE, Pope ST (1988) A Cookbook for Using the Model-View-
Controller User Interfuce Paradigm in Smalltalk-80. Journal of Object-
Oriented Programming 1:26-4%

Kuikka E, Leinonen P, Penttonen M (2002) Towards Automating of
Document Structure Transformations. Proc, 2002 ACM Symposium on
Document Engineering, McLean, USA, pp 103-110

Kukluk J, Holder L, Cook D (2006) Inference of Node Replacement
Recursive Graph Grammars. Proc. 6th SLAM International Conference
on Data Mining. Washington DC, USA, pp 544-548

Kuske 8 (2001) A Formal Semantics of UML State Machines Based on
Structured Graph Transformation. Proc. UML 2001. pp 241-256

Lassila O, R. R. Swick RR (1999) Resource Description Framework (RDF)
Model and Syntax Specification. W3C Recommendation. February
1999

Lee HS, Schor MI (1992} Match Glgorthms for Generalized Rete
Networks. Artificial Intelligence 54:249-274

Leinonen P (2003) Augtomating XML  Document  Structure
Transformations. Proc. 2003 ACM  Symposium on Document
Engineering. Grenoble, France, pp 26-28

Liu B, Zhao K, Yi L (2002) Visualizing Web Site Comparison. Proc. 6"
Int. World Wide Web Conf.. Honolulu, pp 693-703

Luckbam D, Kenney J, Augustin L, Vena J, Bryan D, Mann W (1995)
Specification and Analysis of System Architecture Using Rapide.



218 Bibliography

IEEE Transactions on Software Engineering 21:336-355

McWhirter JD, Nutt GJ (1994) Escalante: An Environment for the Rapid
Constuction of Visual Language Applications, Proc. 10th IEEE
Symposium on Visual Languages. St. Louis, Missouri, pp 15-22

Maarek YS, Shanl IZB (1997) WebCutter: A System for Dynamic and
Tailorable Site Mapping, Proc. 6" Int. World Wide Web Conf.. pp 713-
722

Madhavan I, Bemstein PA, Rahm E (2001} Generic Schema Matching
Using Cupid. Proc. 27" VLDB Conf.. Roma, Italy, pp 49-58

Madhavan J, Halevy AY (2003} Composing Mappings Among Data
Sources. Proc. 29" VLDB Conf.. Berlin, German, pp 572-583

Maier, Ziindorf A (2003) The Fijaba Statechart Synthesis Approach. Proc.
2 Int. Workshop on Scenarios and State Machines: Models,
Algorithms, and Tools

Makom M 2000) R%AX (REgula: LAnguage Description for XML).

Mankuﬁ? I, Abowd GD Hudmn SE (2000) OOPS: A Toolkit Supporting
Mediation Techniques for Resolving Ambiguity in Recognition-Based
Interfaces. Computers and Graphics 24:819-834

Marriott K (1994) Constraint Multiset Grammars, Proc. 10th IEEE
Svmposium on Visual Languages. St. Louis, USA, pp 118-125

Marriott K, Meyer B (1997) On the Classification of Visual Languages by
Grammar Hierarchies. Journal of Visual Languages and Computing
8:375-402

Marriott K, Meyer B (1998) (Eds) Theory of Visual Languages. Springer-
Verlag

Marriott K, Meyer B, Tardif L (AZOUE) Fast and Efficient Client-Side
Adaptability for SVG. Proc. 11" World Wide Web Conf.. Hawaii, USA,
pp 496-507

Martinez A, Patifio-Martinez A, Jiménez-Peris R, Pérez-Sorrosal F (2005)
ZenFlow: A Visual Web Service Composition Tool for BPELAWS.
Proc. 2005 IEEE Symposium on Visual Languages and Human-
Centric Computing. Dallas, USA, Sep. 20-24, pp 181-188

Medvidovic N, Taylor RN (2000) A Classification and Comparison
Framework for Software Architecture Description Languages. JEEE
Transactions on Software Engineering 26:70-93

Medvidovic N, Rosenblum DS, Redmiles DF, Robbins JE (2002)
Modeling Sofiware Architectures in the Unified Modeling Language.
ACM Transactions on Software Engineering and Methodology 11:2-57

Mehta NR, Medvidovic N (2003) Composing Architectural Styles From
Architectural Primitives. Proc. ESEC/FSE'03. pp 347-350

Melnik §, Rahm E, Bernstein PA (2003) Rondo: A Programming Platform



Bibliography = 219

for Generic Model Management. Proc, SIGMOD 2003 Conf.. San
Dieago, CA, pp 193-204

Métayer DL (1998) Describing Software Architecture Styles Using Graph
Grammars, IEEE Transactions on Software Engineering 24:521-533

Miller RI, Hernandez MA, Haas LM, Yan L, Ho C, Fagin R, Popa L (2001)
The Clio Project: Managing Heterogeneity, SIGMOD Record 30:78-83

Milo L, Zohar S (1998) Using Schema Maiching to Simplify
Heterogeneous Data Translation. Proc. VLDB’98. New York City,
USA, pp 122-133

Minas M (1998) Hypergraphs as a Uniform Diagram Representation
Model. Proc. Theory and Applications of Graph Transformations.
Paderborn, Germany

Minas M (2002) Gﬂnce:pts and Realization of a Diagram Editor Geperator
Based on Hypergraph Transformation. Science of Computer
Programming 44:157-180

Minas M (2006) Parsing Star Grammars. Proc. VL/HCC 06 Workshop on
Graph and Model Transformation. Brighton, UK.

Minas M, Shklar L (1996) Visual Definition of Virtual Documents for the
World-Wide Web. Proc. 3" Int. Workshop on Document Processing.
LNCS 1293, pp 183-195

Minas M, Viehstaedt G (1993) Specification of Diagram Editors Providing
Layout Adjustment with Minimal Change, Prec. 1993 IEEE
Symposium on Visual Languages. pp 324-329

Minas M, Viehstaedt (G (1995) DiaGen: A Generator for Diagram Editors
Providing Direct Manipulation and Execution of Diagrams. Proc. 11th
IEFE Symposium on Visual Languages. Darmstadt, Germany, pp 203-
210

Misue K, Eades P, Lai W, Sugiyama K (1995) Layout Adjustment and the
Mental Map. Journal of Visual Languages and Computing 6:183-210

Moriconi M, Qian XL, Riemenschneider RA (1995) Correct Architecture
Refinement. IEEE Transactions on Software Engineering 21:356-372

Muchaluat DC, Rodrigues RF, Soares LFG (1998) WWW Fisheye-View
Graphical Browser. Proc. IEEE Multimedia Modeling

Myers BA (1990) Taxonomies of Visual Programuming and Program
Visualisation. Journal of Visual Languages and Computing 1:97-123

Myﬂm BA (1998) Authoring Interactive Behaviors for Multimedia. Proc.
9" NEC Research Symposium. Nara, Japan

Mylopoulos J, Borgida A, Jarke M, Koubarskis M (1990) Telos:
Representing Knowledge About Information Systems. ACM
Transactions on Information Systems 8:325-362

Nakayama T, Kato H, Yamano Y (2000) Discovering the Gap Between
Web Site Designers’ Expectations and Users’ Behavior. Proc. 9" Int.



220  Bibliography

World Wide Web Conf.. Amsterdam, Netherlands

Pietriga E, Vion-Dury J-Y, Quint Y (2001) VXT: A Visual Approach to
XML Transformations. ACM Symposium on Document Engineering.
Atlanta, USA, pp 1-10

Pietriga E (2005) A Toolkit for Addressing HIC Issues in Visual Language
Environments. Proc, 2003 IEEE Symposium on Visual Languages and
Human-Centric Computing. Dallas, USA, Sep. 20-24, pp 145-152

Pimental M, Abowd G, Ishiguro Y (2000) Linking by Interacting: A
Paradigm for Authoring Hypertext and Hypermedia. Proc. Hypertext
2000. Austin, USA, pp 39-48

Plimmer B, Grundy J, Hosking J, Priest R (2006) Inking in the IDE:
Experuences with Pen-based Design and Annotation. Proc. 2006 IEEE
Symposium on Visual Longuages and Human-Centric Coomputing.
Brighton, UK, pp 111-115

Plump D (1993} Hypergraph Rewriting: Critical Pairs and Undecidability
of Confluence. In: Sleep MR, Plasmeijer MJ, van Eekelen M (Eds)
Term Graph Rewriting. pp 201-214

Pong MC, Ng N (1983) PICS — A System for Programming with
Interactive Graphical Support. Seftware — Practice and Experience
13:847-855

Pottinger RA, Bemstein PA (2003) Merging Models Based on Given
Correspondences. Proc. 29" VLDB Conf,, Berlin, Germany, pp 826-
873

Prabhakaran B (2000) Multimedia Authoring and Presentation Techniques,
Guest-Editor’s Introduction. Multimedia Systems 8:157

Radermacher A (1999) Support for Design Patterns through Graph
Transformation Tools. Proc. Application of Graph Transformations
with Industrial Relevance. LNCS 1779, pp 111-126

Rahm E, Bernstein PA (2001) A Survey of Approaches to Automatic
Schema Matching. The VLDB Journal 10:334-350

Rekers J, Schiirr A (1995} A Graph Grammar approach to Graph Parsing.
Proc. 1995 IEEE Symposium on Visual Languages. pp 195-202

Rekers J, Schier A (1996) A Graph Based Framework for the
Implementation of Visual Environments. Proc. 12th IEEE Symposium
on Visual Languages. Boulder, Colorado

Rekers J, Schiirr A (1997) Defining and Parsing Visual Languages with
Layered Greph Grammars. Jowrnal of Visual Languages and
Computing 8:27-55

Revesz GE (1983) Introduction to Formal Languages. McGraw-Hill
Computer Science Series

Rosenfeld G (1976) Array and Web Grammars: An Overview. In:
Lindenmayer A, Rozenberg G (Eds) dwiomata, Languages, and



Bibliography 221

Development, North-Holland

Rozenberg G (1997) (Ed) Handbook on Graph Grammars and Computing
by Graph Transformation: Foundations. Vol.1, World Scientific

Rozenberg G, Welzl E (1986) Boundary NLC Graph Grammars — Basic
Definitions, Normal Forms, and Complexity, Information and Control
69:136-167

Salis P, Tate G, MacDonell S (1995) Software Engineering. Addison-
Wesley Publish Company

Sarkar M, Brown MH (1994) Graphical Fisheye Views. Communications
of the ACM 37:73-84

Schefstrom D, van den Broek G (1993) Tool Integration-Environments
and Frameworks, John Wiley, Chichester, England

Schiir A (1991) PROGRES, A VHL-Language Based on Graph
Gramnmars. Proc. 4th Int. Workshop on Graph Grammars and Their
Application to Computer Science. LNCS 532, pp 641-659

Schiirr A (1994) Specification of Graph Translators with Triple Graph
Grammars. Proc. Int. Workshop on Graph-Theoretic Concepts in
Computer Science. Herrsching, Germany

Schiir A, Winter A, Ziindorf A (1999) The PROGRES Approach:
Language and Environment. In: Rozenberg G (Ed) Handbook on
Graph Grammars and Computing by Graph Transformation:
Applications. Vol.2, pp 487-550

Schiirr A, Zundorf A, Winter A (1995) Visual Programming with Graph
Rewriting Systems, Proc. 11th IEEE Symposium on Visual Languages.
Darmstadt, Germany, pp 326-333

Selonen P, Xu J (2003) Validating UML Models Against Architectural
Profiles. Proc. ESEC/FSE '03. pp 58-67

Shatz S (1993) Development of Distributed Software. Macmillan
Publishing Company, New York

Shaw M, Garlan D (1995) Sofiware Architecture: Perspectives on an
Emerging Discpline. Prentice Hall

Shaw M, DeLine R, Klein DV, Ross TL, Young DM, Zelesnik G (1995)
Abstractions for Software Architecture and Tools to Support Them.
IEEE Transactions on Software Engineering 21:314-335

Sheth A, L. Larson J (1990) Federated Database Systems. ACM Computing
Surveys 22: 183 - 236

Bhu NC (1986) A Perspective and A Dimensional Analysis, In: Chang SK,
Ichikawa T, Ligomenides PA (Eds) Visual Languages. Plenum, New
York

Shui WM, Wong RK (2003) Application of XML, Schema and Active
Rules System in Management and Integration of Heterogeneous
Biological Data. Proc. 3° IEEE Symposium on Bioinformatics and



222 Bibliography

Bipengineering, pp 367-374

Siegel D (1997) Creating Killer Web Sites: The Art of Third Generation
Site Design. 2nd Ed., Hayden Books

Six JM, Kakoulis KG, Tollis IG (2000) Techniques for the Refinement of
Orthogonal Graph Drawings. Journal of Graph Algorithms and
Applications 4.75-103

Smith DC (1975) Pygmalion: A Computer Program to Model and Simulate
Creative Thought. Ph.D. Thesis, Stanford University

Smith DC, Cypher A, Spobrer J (1994) KidSim: Programming Agents
without a Programming Langauge. Communications of the ACM
37:54-67

Soares LFG, Rodrigues RF, Saade DCM (2000) Modeling, Authoring and
Formatting Hypermedia Documents in the HyperProp System.
Mudtimedia Systems 8:118-134

Song GL (2006) A Graphical Framework for Model Management. Ph.D.
Thesis. Department of Computer Science, The University of Texas at
Dallas

Song GL., Zhang K, Wong RK, Kong J (2004a) Management of Web Data
Models Based on Graph Transformation. Proc. 2004 IEEE/WIC/ACM
Int. Conf. on Web Intelligence, Beijing, China, pp 398-404

Song GL, Zhang K, Kong J (2004b) Model Management Through Graph
Transformations, Proc. 2004 IEEE Symposium on Visual Languages
and Human-Centric Computing, Rome, Italy, pp 75-82

Stasko JT, Domingue JB, Brown MH, Price BA (1998) Software
Visualization — Programming as a Multimedia Experience. MIT Press,
Boston

Su H, Kuno H, Rundensteiner EA (2001) Automating the Transformation
of XML Documents. Proc. 3° Int. Workshop on Web Information and
Data Management, Atlanta, USA, pp 68-75

Sutherland IE (1963) Sketchpad: A Man-machine Graphical
Communications System. Ph.D. Thesis. MIT

Taentzer G, Geodicke M, Meyer T (1998) Dynamic Change Management
by Distributed Graph Transformation: Towards Configurable
Distributed Systems. Proc. 6" Int. Workshop Theory and Application
of Graph Transformations. LNCS 1764, pp 179-193

Thompson HS, Beech D, Maloney M, Mendel-Sohn N (2000) (Eds) XML
Schema Part 1: Structures, W3C Docriment

Torlone R, Atzeni P (2001) A Unified Framework for Data Translation
Over the Web. Proc, WISE'(1, Kyoto, Japan

Vadaparty K, Aslandogan YA, Ozsoyoglu G (1993) Towards a unified
visual database access. Proc. ACM SIGMOD Conf. on Management of
Data, pp 357-366



Bibliography 223

van Wijk JJ (2006) Views on Visualization. IEEE Tramsactions om
Visualization and Computer Graphics 12:421-432

Vazirgiannis M, Kostalas I, Sellis T (1999) Specifying and Authoring
Multimedia Scenarios. IEEE Multimedia. July-September:24-37

Vazirgiannis M, Theodoridis Y, Sellis T (1998) Spatio-Temporal
Composition and Indexing for Large Multimedia Applications.
Multimedia Systems 6:284-298

Vion-Dury J-Y, Lux V, Pietriga E (2002) Experimenting with the Circus
Language for XMIL. Modeling and Transformation. Proc. 2002 ACM
Symposium on Document Engineering, McLean, USA, pp 82-87

Wadge WW, Yildirim T (1997) Intensional HTML. Proc. 10" Int.
Svmposium on Languages for Intensional Programming, Victoria,
Canada, pp 34-40

Weitzman L, Wittenburg K (1994) Automatic Presentation of Multimedia
Documents Using Relational Grammars. Proc. 1994 ACM Int. Conf.
on Multimedia. San Francisco, USA, pp 443-451

Weitzman L, Wittenburg K (1998) Grammar-Based Articulation for
Multimedia Document Design. Maybury MT, Wahlster W (Eds)
Readings in Intelligent User Interfaces. Morgan Kauffimann, San
Francisco, pp 310-327

Wermelinger M (1998} Towards a Chemical Model for Software
Architecture Reconfiguration. Proc. 4* Int. Conf. on Configurable
Distributed Systems. pp 111-118

Wermelinger M, Fiadeiro JL (2002) A Graph Transformation Approach to
Software Architecture Reconfiguration. Science of Computer
Programming 44:133-155

Wilde N, Lewis C (1990) Spreadsheet-based Interactive Graphics: From
Prototype to Tool. 4CM SIGGHI Special Issue, Proc. CHI'90, pp 153-
159

Wills LM (1992) Automated Program Recoguition by Graph Parsing.
Ph.D. Thesis, MIT Al Lab

Wittenburg K (1992) Earley-Style Parsing for Relational Grammars. Proc.
8th IEEE Workshop on Visual Languages. Seattle, Washington, pp
192-199

Wittenburg K, Weitzman L (1996) Relational Grammars: Theory and
Practice in a Visual Language Interface for Process Modeling. Proc.
AVI'96, Gubbio, Italy

Wittenburg K, Weitzman L, Talley J (1991) Unification-based grammars
and tabular parsing for graphical languages. Jowrnal of Visual
Languages and Computing 2:347-370

W3C (2001) Synchronized Multimedia Integration Language (SMIL 2.0).

Shwrww w3, 001/REC-smil20-20010807/



224  Bibliography

W3C (2004a) Extensible Markup Language (XML) 1.0 (3" Edition).
http/fwww.w3.0 -xmbhtml

W3C (2004b) Cascading Style Sheets (CSS).
http://wrwrw. w3.org/Style/CSS/

W3C (1999) XSL Transformation (XSLT). http://www.w3.org/TR/xslt

Yan L., Miller RJ, Haas LM, Fagin R (2001) Data-Driven Understanding
and Refinement of Schema Mappings. Proc. ACM SIGMOD’2001, pp
485-496

Zhang DQ (1997) Generation of Visual Languages. PhD. Thesis,
Department of Computing, Macquarie University, Sydney, Australia

Zhang DQ, Zhang K (1997) Reserved Graph Grammar: A Specification
Tool for Diagrammatic VPLs. Proc. 13th IEEE Symposium on Visual
Languages. Capri, Italy, pp 284-291

Zhang DQ, Zhang K (1998a) On a Visual Distributed Programming
Environment and Its Construction by a Meta Toolset. Proc. [0th Int.
Conf. on Software Engineering and Knowledge Engineering. San
Francisco, USA, pp 347-350

Zhang DQ, Zbang K (1998b) VisPro: A Visual Language Generation
Toolset. Proc. 14th IEEE Symposium on Visual Languages. Halifax,
Canada, pp 195-202

Zhang DQ, Zhang K, Cao J (2001a) A Context-sensitive Graph Grammar
Formalism for the Specification of Visual Languages. The Computer J
44:186-200

Zhang K (2003) (Ed), Software Visualization — From Theory to Practice.
Kluwer Academic Publishers, Boston

Zhang K, Kong I, Qiw MK, Song GL (2005a) Multimedia Layout
Adaptation Through Grammatical Specifications. ACM/Springer
Multimedia Systems 10:245-260

Zhang K., Song GL., Kong J (2005b) Interoperating XML-Style of Digital
Artifacts for Information Reuse. Proc. 2005 IEEE Int. Conf on
Information Reuse and Integration (IRI'05). Las Vegas, USA, pp 126-
131

Zhang K, Huang ML, Li KC (2002) An Integrated Visual Framework for
Human-Web Interface. Proc. 4" IEEE Int. Workshop on Advanced
Issues of E-Commerce and Web-based Information Systems
(WECWIS’02). Newport Beach, California, USA, pp 195-202

Zhang K, Ma X, Hintz T (1999) The Role of Graphics in Parallel Program
Development. Journal of Visual Languages and Computing 10:215-
243

Zhang K, Zhang DQ, Cao J (2001b) Design, Construction and Application
of 8 Generic Visual Language Generation Environment. [EEE
Transactions on Software Engineering 27:289-307




Bibliography = 225

Zhang K, Zhang DQ, Deng Y (2001c) Graphical Transformation of
Multimedia XML Documents. Annals of Software Engineering
12:119-137

Zhang KB, Zhang K (1999) An Incremental Approach to Graph Layout
Based on Grid Drawing. Preoc. 3rd Workshop on  Sofiware
Visualization, University of Technology, Sydney

Zhang KB, Zhang K, Orgun MA (2002) Grammar-Based Layout for A
Visual Programming Language Generation System. Proc. 2nd Int.
Conf. on the Theory and Application of Diagrams. Georgia, USA,
LNCS 2317, Springer, pp 106-108

Zhang Y, Zhang K (2000) Associative Query for Mulii-version Web
Documents. In: Gergatsoulis M, Rondogiannis P (Eds) Intensional
Programming II. World Scientific, pp 55-64



Appendix RGG+: An Generalization to the RGG

A.1 Introduction

Like textual programming languages that are usually equipped with proper
formal syntax definitions and parsers, graphical or visual languages need
the support of such mechanisms. Formal definitions of graph grammars of-
fer the following advantages (Rekers and Schiirr 1995):

» Without a proper syntax definition, new users can only guess the syn-

tax of a graphical language by generalizing from the provided exam-
ples,

s A definition could serve as an unambiguous specification for syntax-
directed editors over the language,

s A graphical parser could be generated out of a proper definition, and

* A syntax definition is a necessary precondition for a definition of the
semantics of the language.

Among a large variety of visual languages only a few are equipped with
proper formal syntax definitions. This is mostly due to the fact that the ex-
tension from one-dimensional textual languages to two-dimensional
graphical languages raises new issues. The existing graph grammar for-
malisms, though proven to be useful in many practical applications, need
to be improved in many aspects, such as their expressive power and easi-
ness to be developed and implemented.

As reviewed in Chapter 2, a number of grammar formalisms and their
parsing algorithms have been proposed, most of which are used to define
context-free grammars with limited expressive power. The best known
context-sensitive graph grammar formalism is the layered graph grammar
{Rekers and Schitrr 1997), which is relatively expressive but requires ex-
ponential parsing time. The RGG improves the LGG in its expressiveness
as well as the parsing efficiency, With a spatial extension to the RGG, the



228  Appendix RGG+: An Generalization to the RGG

spatial graph grammar (SGG) discussed in Chapter 3 improves the parsing
efficiency further due to the additional spatial constraints. Although both
RGGs and SGGs had successfully solved many graph related problems in
applications described in Chapters 4 through 7, the confluence condition
restricts their applications,

This appendix discusses an attempt to generalize the RGG formalism in
two directions: ease the development of graph grammars, and enhance the
expressiveness of the gramumar formalism by removing the confluence re-
striction in the RGG. As expected, the parsing efficiency will have to be
sacrificed. We will call this generalized version RGG+.

The contribution of the RGGH is twofold. One is to replace the multiple
layers of labels with the usual two layers, i.e., terminal and non-terminal
labels, and introduce a size-increasing condition to graph grammar produc-
tions to solve the membership problem. The size-increasing condition only
imposes some weak restrictions on the structure of productions, and is
more intuitive and easier to handle than that of the layer decomposition
mechanism. The other is to give a more general parsing algorithm that has
no requirement that graph grammars must be confluent. This greatly en-
hances the parsing capability.

The rest of this appendix is organized as follows. Section 2 defines the no-
tations used in the subsequent sections. Section 3 formally defines the
RGGH and its languages, and proves the decidability of RGG+s. A parsing
algorithm for RGGHs is described in Section 4 along with an analysis of its
time and space complexities. Possible approaches to improving the effi-
ciency of the parsing algorithm are discussed in Section 5. Finally, Section
6 summarizes this appendix.

A.2 Notations

The basic concepts and notations in this appendix are consistent with the
RGG definition in Chapter 2, and are summarized below for expression
clarity and simplicity.

D An empty set.

Q: A finite set of labels, consisting of two digjoint mbset&, ter-
minal label set Q7 and non-terminal label set O, ie,
Q=0"uv0¥ and Q" O =0,



A.3 The Generalization 229

£
p={L,R):

R(H,G):

Cardinality of a set.

A node set consisting of a terminal node set N7 and a non-
terminal node set N, ie, N=NTUNM with
N ANM =@

A labeling function establishing a mapping ¥ — Q.

A production consisting of a left L and a right R graphs
over the same label set Q.

A set of redexes of graph G, which are sub-graphs of graph
H.

T(H,G,G,H):Transforming graph H by replacing its sub-graph

H e R(H,G) with G' to yield a new graph.

Hw® H': R-application or reduction of a production p:=(L,R) to
graph H ,namely H'=T(H,L, R H).

H —* H': L-application or derivation of a production p=(L,R) to
graph H ,namely H'=T(H,R,L,H).

Hw" H,: A series of R-applications: H—® H,, H, »® H,, ..,
H,, " H, including the case n =0 when H =H, and
HwH.

H—"H,: A series of L-applications: H - H,, H, > H,, ...,
H,, -»" H, including the case n=0 when H=H, and
H—>H.

A.3 The Generalization

The RGG+ inherits from the RGG the most basic concepts, such as graph
element, graph, marking, isomorphism, redex, and graph transformations
including L-application and R-application. In the RGG+'s grammar defini-
tion, a size-increasing condition is proposed to replace the layer decompo-
sition mechanism used in the RGG. The condition makes RGG+’s easier to



230  Appendix RGG+: An Generalization to the RGG

design while ensuring the membership problem of RGG+'s to be decid-
able.

A.3.1 Definition of a RGG+ and its language

It is well known that graph grammars with arbitrary graphs on the left and
right sides of productions are able to generate type 0 languages, and the
membership problem for type 0 languages is in general undecidable
(Revesz 1983). Similar to LGGs, the requirement that the left graph of
every production must be lexicographical smaller than its right graph en-
sures the decidability of RGGs. In order to relieve graramar designers from
assigning labels to layers and ensuring a lexicographically smaller left
graph than the right graph in each production, we introduce a size-
increasing condition into the grammar definition, similar to the length-
increasing condition in textual grammars. This is a weak constraint on the
size between the right graph and the left graph of a production. Impacting
little on the flexibility of context-sensitive grammars, the constraint is easy
and intuitive to treat by grammar designers.

Definition A.1 gg = (4,P,K) is a graph grammar called RGG+, where 4

is an initial graph, P a set of graph grammar productions, Q is a finite la-

bel set and can be further divided into two disjoint subsets, 7 and Q7
for terminals and non-lerminals respectively. For each produc-
tion, p = (L, R) € P, the following conditions must be satisfied:

¢+ R is nonempty,
s L and R are over the same label set O, and
s the size of R must be no less than that of L, i.e., | pLN | pRN|;

if they are equal, the number of non-terminal nodes in R must ba
more thanthatin L, Le., | pLN|= pRN || pLNT |4 pRNT |.

The last condition ensures size-increasing, guaranteeing that a graph can
be parsed in finite steps with the grammar and a definite answer as to
whether or not the graph is in the grammar’s language will be found. The
language of the grammar is defined as follows.

Definition A.2 Let gg = (4, P,Q2) be a RGG+, its language I"(gg) is a set

of graphs that can be derived from the initial graph 4 and each graph
node has one terminal label, i.e.,

T(gg)={G| 4" GAf(GN)cQ}.



A4 Graph Parsing 231

A.3.2 Decidability

When a RGG+ is given, its language is determined. Whether an arbitrarily
given graph is in the language or not is decidable because of the following
theorem.

Theorem A.1 For every RGG+ gg = (4,P,0) and for an arbifrary non-
empty graph H (H.N=®), it is decidable whether or not ¥ is in
I'(gg).

Proof: For a given graph H with a finite number of terminal nodes,
namely H.N = HNT being a finite set, the total number of graphs
with F(HN)cQ and | H.N|§ HN| must be finite under finite Q. Con-
sidering a sequence of graphs

4 =§ﬁ‘»‘ﬁi*§25‘"“ﬁn«hﬁn #H

such that H,.N'" «® and |H,|s|H,, | for i=0L..,n—1 and
H,#H, if i = j, the number of such sequences without repetition is also
finite. Thus we can enumerate all such sequences and check whether
H,-" H,,; (i=0],..,n—1) holds for at least one of them. If so, then
clearly H «T'(gg), otherwise, H #'(ge). o

In the proof, only inequality | p.L.N |<] p.R.N | is employed, implying that
the inequality itself can guarantee the decidability of the RGG+. However,
introducing an implication |p.LN|= p.RN |- pLNT | pRN"| can
help to speedup parsing. The implication and the inequality together decide
that each R-application will at least either reduce a node or change a ter-
minal node to a non-terminal node in the reduced intermediate graph.
Therefore, R-applications can only be applied finite times to any host
graph of a given size.

A.4 Graph Parsing

Having proven the membership problem for the languages defined by
RGGHs to be decidable in the last section, this section presents a parsing
algorithm for the languages of RGG+s.



232 Appendix RGG+: An Generalization to the RGG

The SFPA, the parsing algorithm of the RGG, is very efficient in parsing
any graph in polynomial time under the assumption that if one parsing path
fails, any other parsing paths will also fail. So, the SFPA is only suitable
for those grammars called selection-free grammars. In order to support the
specification of those context-sensitive grammars that are not selection-
free, we need to develop a more general parsing algorithm that attempts to
search all possible parsing paths instead of just one as in the SFPA, Sucha
parsing algorithm is no doubt more powerful but its performance may be
seriously penalized because of the extremely large search space.

Generally, parsing is a process that applies a given graph grammar to per-
form a series of R-applications to reduce a given host graph to the initial
graph. It usually needs to incorporate the following three interrelated ac-
tions:

1. Search in the host graph for the redexes of a production’s right graph;

2. Accomplish an R-application with a found redex to produce a new in-
termediate graph from the host graph or from the current intermediate
graph; and

3. Trace all the reduction paths by applying in turn the above two ac-
tions until a path leading to the initial graph is found or all possible
paths have been exhausted.

In the following, we will discuss first how to trace all the reduction paths,
and then about the search for all redexes of a production’s right graph,

A.4.1 A Parsing Algorithm

A straightforward approach to parsing is to enumerate all the sequences
and then check them one by one to see whether each derivation holds for at
least one of the sequences, as shown in the proof of Theorem A.1. Unfor-
tunately, this approach may have to handle many derivation-irrelevant se-
quences and thus is inefficient. In order to avoid irrelevant sequences, we
try to trace all possible reduction paths starting from a given host graph to
see if there exists one path that leads to the initial graph.

The following function realizes the tracing task, assuming that search for a
redex and R-application has already been implemented (as in the SFPA).
In the function two stacks are employed to separately store the redexes
found and the intermediate host graph yielded. The tracing needs to main-
tain a correspondence between a redex and its host graph in order to per-
form the corresponding reduction. Since such a correspondence is usually



A4 Graph Parsing 233

many to one, the fanction uses a delimiter in the redex stack to delimit a
group of redexes that correspond to the same host graph. The delimiter
makes the correspondence manageable by synchronizing the contents in
the two stacks. The function takes a graph and a set of productions as input
and returns a definite answer indicating whether the graph is valid or not.

Parsing (Graph H , ProductionSet P )
loop-1: while (H=4)

DELIMITER — redexStack; i push
Loop-2: forali pe P

{
redexSet = FindRedexForRight{ 7 , p.R )
Loop-3:  for all redex € redexSet,

redex — redexStack; i push
}
redex « redexStack, i pop
Loop-4:  while (redex = DELIMITER)
{
H « hostStack; # pop
redex « redexStack; {f pop
if (redex = NULL)
return{“Invalid”);
}
hostSlack «— H ; /f push
H = RightApplication( H , p , redex);
}
return("valid™);
}
A4.2 Search for Redexes

The SFPA has partially solved the search problem, in which a function is
constructed to search for only one redex once. Fortunately, it is easy to ex-
tend the function from searching for one redex to searching for all redexes.
The extended function is given as follows, which takes a host graph and a
right graph as input and returns a set of redexes found.

FindRedexForRight(Graph H , Graph R );
{
redexSet= & ;

nodeSequence = orderNodeSequence( R );
candidateSet = findNodeSequenceSet( H , nodeSequence);



234 Appendix RGG+: An Generalization to the RGG

for all candidate < candidateSet
redexSel = redexSel+match(candidate, H , R );
retumn(redexSet);
}

The function orderNodeSequence( R ) sequences the nodes in the right
graph according to their labels” alphabetic order. The function findNode-
SequenceSet( #, nodeSequence) finds all possible node sequences
from the host graph, each of which is isomorphic to the nodeSequence.
Finally, the function match({candidate, H, R ) checks whether a candi-
date in the host graph is a redex of the right graph, if so, the candidate is
returned as a redex, otherwise, a null is returned.

A.5 Parsing Compilexities

Complexity analysis of an algorithm is helpful in evaluating the algo-
rithm’s performance. In this section we analyze the time complexity and
the space complexity of the above parsing algorithm.

A.5.1. Time Complexity

Theorem 5.1 The time complexity of the parsing algorithm Iis
0((%)" (¥"m)"), where h is the number of nodes in the host graph to be

parsed, » is the maximal number of nodes in the right graphs of all pro-
ductions, and » is the number of productions in the given RGG+,

Proof: According to the structure of the parsing algorithm, its maximal
time complexity can be expressed as:

= O{il(i;{(t} +l3)+l4 +1'2)),

where /; is the maximal number of iterations in the outmost loop-1, I, is
the number of iterations in the first inner loop-2, /, is the number of itera-
tions in the innermost loop-3, /, is the number of iterations in the second
inner loop-4, and #, and #, are the time complexities of FindRedexForRight(}
and RightApplication(} respectively.



A5 Parsing Complexities 235

We first consider /,, which is in fact the number of productions, ie.,
I, =n=| P|. Since I, -I; is the total number of actions in pushing redexes
into the redex stack and /, is the partial number of actions in popping re-
dexes from the redex stack, /, should be no more than /, -/,, and thus can
be ignored. Since/; is the number of redexes found in the host graph with
respect to the right graph of a given production, the maximal number of
redexes is all possible node combinations Cj, thus I; <Cj =0(h"). When
considering 1, , the worst case is when the algorithm’s result is “invalid’,
and all redexes found during parsing will enter the stack. Each of the re-

dexes, when popped out of the stack, leads to an iteration of the outmost
loop. Therefore, /;, equals to the number of the redexes found.

An iteration of the outmost loop produces no more than #C; redexes for
n productions and performs one R-application. According to the size-
increasing condition, each R-application would reduce the size of the de-
rived host graph. Since there are at most # R-applications that may not re-
duce the host graph size and an R-application will reduce the host graph
size by at least 1, the following derivations hold for /;:

L <(nCy Y nCinCh_y.tCh_y, y1Ch gy (1)
=0 (C7) ChChg o Ol CF

B _GoDl DA
‘-0 (-1-91" 1A ol

2T AT @t )
({k r)fr*) H rlut

2&

2;’_”(11(}; ..k —r +1)" I_I(u-i—r)(u-br D@+ 2)+1)

*) el

Br—}
=0 )”‘k”‘” I

=}

=a((§}3’*k"’((h-r-1>z)f)



236  Appendix RGG+: An Generalization to the RGG

= 0((%)”(&”#!)’)

As for f, and f,, since the maximal possible number of selections of r
nodes from 4 nodes is 4 = h(h~1)...(h —r+1), the worst cases of search-
ing for all redexes of a right graph in a given host graph must be
t, =0(h"). Since ¢, is independent of A, it can be considered £, = O(1)
that is bounded by a constant time.

Combining all the above discussions, we can finally obtain:

mac(fi,-)’*ca‘*m)"). o

A.5.2 Space Complexity

Theorem A.2 The space complexity of the parsing algorithm is
O(h™'y, where & is the number of nodes in the host graph to be
parsed, r is the maximal possible number of nodes in all the right
graphs of productions.

Proof: Obviously the main space-consuming components are the redex
stack and the host graph stack used in the parsing algorithm, We can there-
fore express the maximal space complexity as:

S-—_wgl ”i’Sz,

where 5, is the space used by the redex stack and S, is that by the host
graph stack. Without losing generality, we can assume that the space taken
by a redex is » and that by a host graph is /. Different from time com-
plexity, the use of the stack space is not always increasing because pop op-
erations would release space for reuse. Hence, the worst case is the maxi-
mal occupied space along the longest reduction path, and the following
derivations hold for the redex stack and the host graph stack respectively.

8 Sr(hnCl +nChy + .+ nCh_y ) 2

=m(hC;, +Cp_y +...+C))



A5 Parsing Complexities 237

kit (h—1)! rt
T |
(h— r)‘r‘ (h—1-r)irt Otrt

=rn(

| ]

n (u+r}*
T -t (;; 9] Z

G 1)‘

B-r-1

= O™ + Zu*‘}
wdy

=g(kr+l};
=hh+(h-1}+..+r

=0(h*).
Since ¥ 2 1, we can obtain:
s=0(h"™. o

From the above analysis, we observe that the time complexity is extremely
high while the space complexity is bounded by a polynomial factor. We
also observe that the structure of productions plays an important role in de-
termining the algorithm’s complexity. For example, if a stronger constraint
such as | p.L.N |<| p.R.N | is enforced on productions, then the first s# R-
applications that do not reduce the host graph size can be removed from
(1). In addition, the algorithm itself may be further improved to increase its
efficiency, especially its average time cost.

A.5.3 Optimization Considerations

Although the worst time complexity of the algorithm is extremely high, the
parsing algorithm provides a starting point for further improvement. In
practice, the worst case rarely occurs during parsing. When applying the
RGG+, we could concentrate on the reduction of the average time cost of
parsing under appropriate assumptions applicable to the most commmon ap-
plications. The high parsing costs are due to the search for redexes and



238  Appendix RGG+: An Generalization to the RGG

handling of backtracking, which should be the primary targets for per-
formance improvement.

A straightforward approach to reducing the redex searching time is to nar-
row down the search space within the host graph. In most applications, the
size of a host graph is usually much larger than that of right graphs in pro-
ductions. So, when searching for redexes in a given host graph, we only
need to search for redexes among those host graph nodes whose labels ap-
pear in the right graph under consideration rather than searching for all the
nodes in the host graph. This can be done by first removing the irrelevant
nodes from the host graph, and then searching for redexes in the remaining
nodes. Having obtained the node sequences of the host graph and right
graph, irrelevant nodes can be removed from the host graph in lincar time,
i.e. rh.Let &' be the number of the remaining nodes, the time for search-
ing for a redex can be expressed as r#+Cj; instead of Cj . In the applica-
tions where the host graph is significantly larger than right graphs, the la-
bels appearing in a right graph merely make a small portion of all the
labels appearing in the host graph, that is, 7 >> r and K = r . The com-
plexity of searching for a redex in such a case can be redcued from O(F")
to O(h). The assumption that the host graph is significantly larger than
right graphs is realistic in many applications.

Another optimization approach is to perform as early as possible the R-
applications that reduce the size of the host graph, so that the subsequent
search space would be reduced significantly. This can be done by ordering
the productions according to their values of | p.R.N |—| p.L.N |. Based on

the order, the production with a larger right graph would be applied later,
which inversely, due to stack operations, gives its corresponding redexes
higher priority for R-applications. Of course, if some productions with the
large right graphs are not the ones needed for graph reduction, the above
approach improves little in performance. However, the ordering of produc-
tions can be preprocessed without adding extra cost to the parsing algo-
rithm. Therefore, on average, the approach may be able to reduce the pars-
ing time.

As mentioned before, another major cost in the parsing algorithm is in its
backtracking, which attempts all the productions and their redexes. An
ideal approach to optimizing backtracking is to avoid as many unnecessary
productions and redexes as possible in each step of reduction, i.e, to push
less redexes into the stack during parsing. To perform such an optimiza-
tion, more information is required to limit the scope of productions as well
as their redexes. Because graphs are inherently 2-dimensional and spatial,



A6 Summary 239

one general solution is to use the spatial information, such as direction, to-
pology, alignment, etc., to introduce extra constraints into the search space.
The Spatial Graph Grammar formalism (SGG) presented in Chapter 3 em-
ploys the spatial information specified in the grammar to improve its pars-
ing performance. In the SGG, a mechanism for specifying spatial informa-
tion is introduced into productions so that the nodes in right graphs may be
specified to have some types of spatial relationships. Since a given host
graph can be preprocessed to establish relevant spatial relationship among
its nodes according to their positions in the graph, the matching of spatial
information between the host graph and the right graphs makes a useful
constraint in restricting the selection scope for productions and redexes.

Some existing approaches may be adapted and extended to improve the
parsing performance. For example, the delta-based approach used in
PROGRES (Schiirr 1991), incremental pattern matching based on RETE
networks (Lee and Schor 1992}, and conflict detection with critical pair
analysis (Bottoni et al. 2000). Furthermore, additional information, espe-
cially domain knowledge in specific applications, may also be helpful in
reducing aimless selection of productions and redexes during parsing.

A.6 Summary

This appendix has presented the RGG+ formalism, more general version
the RGG formalism. Compared with the original RGG, two general exten-
sions are made in the RGG+. One is to replace the layer decomposition
mechanism by the size-increasing condition fo ensure the decidability of
RGGrs. The other is a general parsing algorithm that works on any RGG+
regardiess whether it is selection-free or not. These generalizations make
the grammar easier to develop and the parsing algorithm more widely ap-
plicable than the original RGG. As noted above, the penalty for these gen-
cralizations is the more complex and time-consuming parsing, especially
in the worst cases, i.e. the upper bound of the parsing complexity. Hence,
improving the parsing efficiency is necessary.



index

A

Abstract diagram, 177, 178
Abstract syntax graph, 37
Abstract Syntax Notation 1, 94
Action code, 43, 75, 98, 154, 189
Adaptive star grammars, 37

ADL, 141

Aesop, 143

AGG, 36, 202

Aggregation, 132

Alignment, 41

Alterpative layout, 63

Ambiguity, 33

Architectural style, 123, 141, 142
Architecture style, 140
ARTEMIS, 118

ASN.1,94

Association, 132

Anributed Graph Grammar, 36, 202
Attributed Graph Grammars, 36
Attributed Multiset Grammars, 35

B

Backiracking, 238

Boundary NLC graph grammars, 36
BSML, 93,95

C

Cascading Style Sheets, 82

Category filter, 155

CHAM, 143

Circus, 118

Class diagram, 129, 132, 133, 136,
141

Client-server style, 125, 137

Clio, 110, 118, 119

Cocoa, 2

Cognition science, 206

Component, 122

Composition, 132

Concept space, 177, 178

Concepiual model, 3

Configuration, 122, 137

Confluence, 47, 228

Comnector, 122

Constraint filter, 155

Constraint Multiset Grammars, 35,
36

Control flow graph, 192

Control specification, 183, 134, 186,
197

(88, 59,82

Cupid, 119

D

DAG, 49

Dangling condition, 16

Dangling edge, 129, 136

Data interoperation, 89, 204, 208

Data warchouse, 107

Decidability, 230, 231

Design pattern, 121, 136

DiaGen, 34, 37, 202

Diagrammatic visual programming
languages, 9

Differential scaling, 62

Digital design, 208

Directed acyclic graph, 49

Direction, 39

Distance, 40, 150

Distributed program, 193

Distributed programming
environment, 192



242  Index

DNELC graph grammar, 36

Dacument Type Definition, 87

Domain filter, 155

Domain-specific visual language,
205

DTD, 87,90, 94, 101, 118

DV-Centro, 174

Dynamic authoring, 84

Dynamic interface, 83

E

Edge, 12, 109, 122, 139, 150, 185
Embedding, 10, 14, 44
Embedding rule, 15

Ergonomics, 206

Escalante, 201

eXtended Markup Language, 87

F

Fisheye-View, 64, 164
Force-directed algorithm, 158
Fujaba, 202

G

Generalization, 132
Generalized operator, 108, 115
Geographical information systeny,
203
Glide, 201
Grammar formalism
constraint multiset grammar, 57
contexiual layered graph
grammar, 57
layered graph grammar, 57
layout graph grammar, 37, 57
NLG graph grammar, 57
relational grammar, 84
spatial graph grammar, 38
Grammar induction, 207
Graph, 21, 44, 118, 121, 150, 178,
184, 229
invalid, 17, 25
valid, 25
Graph drawing, 84

Graph grammar, 9, 17, 120, 121,
123,132
confluent, 203
context-free, 9, 57, 142, 207
context-sensitive, 9, 57, 203, 207,

227

Graph morphism, 45

Graph rewriting rule, 14

Graph transformation, 127, 140,
141, 142, 143, 154, 189,202,
203, 229

Group, 150

H

HCI, 145

HDM, 118

Helper element, 111, 112, 116

Hierarchical view, 206

HI-VISUAL, 171

Host graph, 14, 16, 17, 22, 45, 70,
73,74, 79,90, 99, 103, 104, 129,
233, 238

HTML, 147, 154

Human-computer interface, 145

Human-Web Interface, 145

HWI, 145, 154

HWIT, 148, 150, 152, 153, 156,
157, 162, 164

Hyperbolic trees, 64

Hyper-graph data model, 118

I
ILP, 207
Induction engine, 207
Inductive logic programming, 207
Inheritance
multiple, 135
single, 135
Isomorphic, 21, 22, 44, 97, 129
Isomorphism, 229

J

Java, 170, 180, 183, 191, 194, 202
JTree, 92, 95



Index 243

K
KidSim, 2

L

L-application, 14, 17, 23, 229
Layered graph grammar, 10, 32, 36,
120, 202, 227

Layered Graph Grammars, 36

Tayout, 37, 38, 39, 47, 57, 59, 63,72,
77, 84, 146, 160, 162, 204

Layout, 178

Left graph, 14, 23

Level filter, 154

LGG, 10, 203, 227

Linear scaling, 62

Mapping, 110, 111

Mapping element, 110, 116, 117

Mark, 15, 22, 45,96, 111, 135

Marking, 15, 44, 61, 203, 229

Mark-up language, 4

Match operator, 119

Membership problem, 228

Mental map, 160

Merge operator, 112, 116, 119

Meta-model, 88, 89, 143

Meta-primitives, 100

Meta-tool, 141, 143, 205

MIC, 143

Model, 89, 109

Model management, 119

Model management, 106, 119
operator, 106, 119

Madel-driven architecture, 207

ModelGen Operator, 113

Muodel-View-Controller, 146, 173

Morphism, 51, 142

Multimedia, 204

Multimedia authoring, 60

Multimedia presentation, 59

Multi~version, 155

MVC, 146, 173, 174, 176

N

Nassi-Shnoeiderman diagram, 177

Navigation, 144, 148

NCBI XML, 93

Negative application condition, 123

Node, 12, 21, 39, 44, 67, 109, 122,
124, 129, 150, 185, 193

Node-edge diagram, 12, 13, 109,
124, 129, 137

NoPump, 171

o

Object-Oriented Hypermedia, 165
QO0-H, 165
Order-free, 28

P

PadPrints, 165

Parser, 79, 108, 116, 127, 168, 203,
206, 227

Parsing, 9, 25, 46, 57, 99, 116, 123,
137, 140, 142, 153, 178, 179,
188, 227, 231,238
semantics, 189
space complexity, 236

Patiern recognition, 208

PDA, 41, 59, 66, 145

PEDS, 192, 194, 195, 200
Personalized Web, 143

Petri net, 2, 83, 189, 192, 194, 197
Piazza, 119

Pipe-filter, 123

Pipe-filter style, 128
Positional Grammars, 35
Primary object, 39

Process flow diagram, 11, 194
Production, 14, 17, 22
Program, 1, 4

Program visualization, 3, 4
Prograph, 2

PROGRES, 143, 202, 239



244  Index

Q
Quasi-redex, 54

R

Rapide, 141

R-application, 14, 16, 17, 23,70,
229,232

RDF, 118, 119

Real-time system, 122

Redex, 14, 16, 22, 25, 45, 96,99,
116, 229, 232, 233, 238

Reduction, 25

Reference element, 110, 116

Reference model, 122

Reference object, 39

Relational grammar, 35, 36

RELAX, 87

Reserved graph grammar, 10, 21,
23,33, 37, 142, 152, 153, 168,
187, 203

Resource management, 208

RETE network, 239

Reusability, 173, 174, 205

Reverse engineering, 144

Reverse Web engineering, 157

RGG, 10, 34, 90, 96, 124, 152, 153,
203, 227

RGG+, 228, 230

Right graph, 14, 23

Rondo, 110, 119

Round-trip engineering, 202, 208

Rule specification, 189

5

Scalable Vector Graphics, 84

Schema, 89, 118, 120

Schema graph, 104

Scheme model, 101

Scientific modeling, 208

Selection-free, 28, 29

Selection-free parsing algorithm, 26,
203

Semantic Web, 119, 205

Semantic zooming, 42, 63

Semiotics, 206

Sensor network, 208

Server-client style, 128

SFPA, 26, 30, 203, 232

8GG, 37,203, 228, 239

SIL-ICON, 201

Simulation, 208

Single parsing path, 25

Bize, 41

Size-increasing condition, 228

Smalltalk, 146, 173

SMIL, 42, 59, 82

Software architecture, 121, 137,
141, 204
transformation, 137

Software reuse, 121, 140

Software verification, 121

Sofiware visualization, 4

Space complexity, 32

SPARGEN, 201

Spatial Graph Grammar, 37, 54, 67,
203, 228, 239

Spatial morphism, 45

Spatial reasoning, 203

Spatial relation, 37, 39

Spatial signature, 44

Specific operator, 108, 115

Spring algorithm, 159, 161

SQL view, 110, 119

State diagram, 207

State machine, 207

Structural isomerphism, 44

Style adaptation, 73

SubdueGL, 207

Sub-graph, 150

Super vertex, 12, 21

Supervisor-Agent pattern, 174

SVG, 84

Synchropized Multimedia
Integration Language, 82

Syntax-directed computation, 43,
189

T

Telos, 118

Temporal specification, 207
Time complexity, 30, 31
Toll gate, 127



Index 245

Topology, 41
Transformation, 23, 147
Translator, 97, 100
Trans8em, 118

Triple Graph Grammar, 120
Typed graph, 142

U

UML, 2, 120, 121, 129, 132, 138,
141, 165, 202, 205

Unification Grammars, 35

Unified Modeling Languages, 2

User interface, 3

v

Varlet, 120
Verification, 135, 205
Vertex, 12, 21, 129
VisPro
design model, 177
VisPro, 11, 140, 170, 180, 181, 191,
192, 195, 197, 200
design model, 178
visual object generator, 179
rule specification geperator, 179
control specification generator,
179
Visual metaphor, 206
Visual model management, 108
Visual modeling, 2, 205
Visual modeling environment, 90
Visual modeling language, 2
Visual object, 197
Visual object generator, 90
Visual programming, 1, 3, 4
Visual programming language, 2,
167, 205
dataflow programming language,
2

diagrammatic visual languages, 2
form-based languages, 2
iconic languages, 2

Visual program, 1

Visual software engineering, 4

Visualization, 3

VLCC, 201

VLPEG, 202

VME, 90

vOG, 90

VPL, 2, 167, 173, 183, 200, 205

VPL generation, 168, 200, 201
customization, 181

VQL, 120

VRDL, 120

VXT, 118

w

Web and Array Grammars, 35

Web design, 144, 149

Web graph, 148, 150, 157, 158, 160,
162

Web graph grammar, 146, 152, 153,
205

Web visnalization, 148

WebMap, 165

WebML, 165

WIPPOG, 2

WML, 65

WOOM, 165

Workbench, 194, 195

Wright, 141

X

Xing, 120

XML, 4, 87, 89, 92, 117, 118, 145,
147, 154

XML-GL, 120

XML Schema, 87, 101, 119

XQuery, 119

XSL, 87,118

XSLT, 82

Xura, 118

XWMF, 165

z

ZenFlow, 171
ZVTM, 168



	Title Page
	Copyright page
	Table of Contents
	Preface
	Foreword
	Chapter 1 Introduction
	1.1 Visual Languages and Programming
	1.2 Visual Programming vs. Program Visualization
	1.3 Organization of the Book
	1.4 General Readings on Visual Languages

	Chapter 2 The Foundation ... Graph Grammars
	2.1 Introduction
	2.2 A Case Study
	2.2.1 Process Flow Diagrams
	2.2.2 Graph Rewriting Rules
	2.2.3 AGraph Grammar for Process Flow Diagrams

	2.3 Formal Definition
	2.3.1 Preliminaries
	2.3.2 Reserved Graph Grammar and Its Properties

	2.4 Graph Parsing
	2.4.1 A Parsing Algorithm
	2.4.2 selection-Free Grammars
	2.4.3 Parsing Complexity

	2.5 Improvements over the Layered Graph Grammar
	2.6 Summary
	7 Related Work

	Chapter 3 Spatial Specification
	3.1 Introduction
	3.2 The Spatial Graph Grammar Formalism
	3.3 Spatial Relationships and Representations
	3.3.1 Direction
	3.3.2 Distance
	3,3.3 Topology
	3.3.4 Alignment
	3.3.5 Size
	3.3.6 Event Driven
	3.3.7 Syntax-Directed Computations

	3.4 Formal DefInitions
	3.5 Graph Parsing
	3.5.1 A Parsing Algorithm
	3.5.2 Object Sequencing
	3.5.3 Asequencing Example

	3.6 Complexity Analysis
	3.7 Summary
	3.8 Related Work

	Chapter 4 Multimedia Authoring and Presentation
	4.1 Introduction
	4.2 Adaptation to Context Changes
	4.2.1 The Marking Scheme
	4.2.2 Size Adaptation
	4.2.3 Style Adaptation

	4.3 Example 1: Adapting Sizes for PDA Displays
	4.3.1. Original Web and Resulting PDA Presentations
	4.3.2 Structural Transformation
	4.3.3 Grammatical Specification

	4.4 Example 2: Adapting Presentation Styles
	4.4.1 A Presentation Style
	4.4.2 Grammatical Specification
	4.4.3 Adapting to An Alternative Style

	4.5 System Architecture and Implementation
	4.6 Summary
	4.7 Related Work

	Chapter 5 Data Interoperation
	5.1 Introduction
	5.2 A Hierarchical Interoperable Framework
	5.3 Interoperatlon at Instance Level
	5.3.1 Source and Target Documents
	5.3.2 Specifying Structures and Translation Rules
	5.3.3 Automatic Validation and Translation

	5.4 Model and SChema Specifications
	5.4.1 Identifying Meta Primitives
	5.4.2 Defining a Model
	5.4,3 Constructing a Schema
	5.4.4 Drawing an Instance Data
	5.4.5 Customizing the Host Graph
	5.4.6 Adapting the Rules
	5.4.7 Drawing an Instance

	5.5 Model Management Operators
	5.5.1 Hierarchical Operations
	5.5.2 Graphical Representation of Models and Mappings
	5.5.3 Implementing Operators by Graph Transformation
	5.5.4 Merge Operator
	5.5.5 ModeIGen Operator
	5.5.6 Generalization of Operators
	5.5.7 A Parsing Example

	5.6 Summary
	5.7 Related Work

	Chapter 6 Software Architecture Design
	6.1 Introduction
	6.2 Designing Architectural Styles
	6.2.1 Components and Connectors
	6
.2.2 Architectural Styles

	6.3 Designing an Architecture
	6.3.1 Toll-Gates

	6
.3.2 Designing a Tall-gate system

	6.4. UML Class Diagram Verification
	6.4.1 Class Diagrams
	6.4.2 Automatic Verification

	6.5 Design Pattern Visualization
	6.6 Software Architecture transformation
	6.7 Summary
	6.8 Related Work

	Chapter 7 Visual Web Engineering
	7.1 Introduction
	7.2 The Human-Web Interface
	7.3 Using the HWI Tool
	7.4 Graphical Programming for Web Design
	7.4.1 Web Graphs and Design Notations
	7.4.2 Graph Operations
	7.4.3 Web Graph Grammar
	7.4.4 Information Filtering
	7.4.5 Support for Multi·version Web Sites
	7.5 Web Reuse Through Reverse Engineering
	7.5.2 Web Visualization Algorithm
	7.5.3 An Example
	7.6 Summary
	7.7 Related Work

	Chapter 8 Visual Language Generation
	8.1 Introduction
	8.1.2 Why Automatic Generation?
	8.1.2 Why Automatic Generation?
	8.1.3 AGenerIc Multi-Level Approach
	8.2 Design Criteria for VPEs
	8.2.1 Heterogeneous Visual Programming
	8.2.2 Hierarchical Structure
	8.3 Design Model
	8.3.1 The MVC Framework
	8.3.2 An Ideal Design Model
	8.3.3 The VisPro Design Model
	8.4 The VlsPro Toolset
	8.4.1 ACase Study
	8.4.2 Visual Object Generator
	8.4.3 Control Specification Generator
	8.4.3.1 Objecf-ori
ented EdIting Commands
	8.4.3.2 Command Specification
	8.4.4 Rule Specification Generator
	8.4.5 Implementation
	8.5 A Case Study: Generating A Distributed Programming Environment
	8.5.1 PEDS
	Graph ModeIing of DIstrIbuted AppIications
	Programming Tools

	8.5.2 Generation of PEDS Using VisPro
	Hierarchical Environment
	Construction of lnteractions

	8.6 Summary
	8.7 Related Work

	Chapter 9 Conclusions and Future Perspective
	9.1 Conclusions
	9.2 Future Perspective

	Bibliography
	Appendix RGG+: An Generalization to the RGG
	A.1 Introduction
	A.2 Notations
	A.3 The Generalization




