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Preface

Visual languages have long been lit pursuit of effective communication 00­
tween human and machine. Today, they are suecessfully employed for
e:nd~user progmmming, modeliog, rapid prototypmg, and design activities
by people of many disciplines including arehitects, artists, children, engi~
neers, and scientists. Furthermore. with rapid advances of the Internet and
Web technology, human~human communication through the Web or eleo­
tronie mobile deviees is becoming more and more prevalent

This manuscript provides a comprehensive introduetion to diagmmmatiooI
visual programming languages and the technology ofautomatie genemtion
ofsnch languages. It covers a broad range ofcontents from the underlying
theory ofgraph grammars to the applications in various domains. The con~

tents were ex:l:l:aeted from the papers that my Ph.D. students and I have
published in the last 10 years. and are updated and organized in a coherent
fashion. The manuseript gives an in.-depth treatment of all the topic areas.
Pointers to related work and further readings are also faeilitated at the end
ofevery chapter exeept Chapter 9.

Rather than describing how to program visually, the manuscript discusses
what are visual programming languages, and how sooh languages and their
underlying foundations can be usefully applied to other fields in computer
science that need graphs as the p:rimary means ofrepresentation.

Assuming the basic knowledge of computer programming and compiler
co:nstruetion, the manuscript can be used as a textbook for senior or gradu~

ate computer science classes on visual languages, or a reference book for
programming language classes, practitioners, and researchers in the related
field.

The manuscript cannot be completed without the helps of many people.
First of all. I am very grateful to Shi~Kuo Chang, a pioneer of visual lan­
guages and one of the greatest computer scientists and Chinese novelists,
tOr writing a foreword for this manuscript. I would like thank my past and
present Ph.D. students who have contributed to its rich contents, particu~

lady Jnn Kong, Gwmglei Song, Da~Qian Zhang, and Chnnying Zhao. My
thanks also go to Maolin Huang (University of Technology, Sydney,



xii Preface

Australia) for allowing me to apply his work to Web visualization. and
browsing; and to Xiaoqin Zeng (Hohai University, China) for his contribu­
tion to the generalization of Reserved Graph Gnunmars. Publishers of the
original papers including IEEE, Oxford Press, and Springer are acknowl­
edged for their permission to reuse the contents previously pnblished in
their respective journals and conferences. Finally, I would like to thank
Susan Lagerstrom-Fife and Sharon Palleschi at Springer USA for their as­
sistance in publishing this manuscript in a timely fashion.

KangZhang

Department ofComputer Science
The University ofTexas at Dallas
Richardson, Texas, U.S.A.



Foreword

Visual computing is computing on visual objects. Some visual objects weh
as images are inherently visual in the sense that their primary representa>­
tion is the visual representation. Some visual objects such as data strul;:­
tures are derivatively visual in the sense that their primary representation
is not the visual representation. but can be transformed into a visual repreA
sentation. Images and data structures are the two extremes. Other visual
objects such as maps may fall somewhere in between the two. Visual comA
puting often involves the transformation from one type of visual objects
into another type ofvisual objects. or into the same type ofvisual objects.
to accomplish certain objectives weh as information reduction. object re(:A
ogmtion and so on.

In visual computing it is important to ask the fonowing question: who per­
forms the visual computing? The answer to this question determines the
approach to visual computing. For instance it is possible that primarily the
computer performs the visual computing and the human merely observes
the results. It is also possible that primarily the human. performs the visual
computiog and the computer plays a supporting role. Often the human. and
the computer are both involved as equal pattoers in visual computing and
there are visual interactions. Formal or informal visual languages are usu­
any needed to facilitate such visual interactions. With the advances in hio­
computing it is conceivable that visual computing may involve animals.
robots. cyborgs and other hybrid life forms so that visual languages can be
either natural or artificiaL It is clear that visual languages are both vehicles
for communication and also tools for programming.

A visual language is a pictorial representation of conceptua1 entities and
operations and is essentially a tool through which users compose visual
sentences. Compilers fur visual languages must interpret visual sentences
and translate them into a form that leads to the execution of the intended
task. This process is not stm:ightforward. The compiler cannot determine
the meaning of the visual sentence simply by looking at the visual objects.
It must also consider the context of the sentence. how the objects relate to
one another. Keeping the user intent and the machine·s interpretation the
same is one ofthe most important tasks ofa visual language.



xiv Foreword

Diagrammatieal visual programming languages are important because
they are based upon relational graphs and capable of specifYing complex
relationships precisely. Kang's book provides a comprehensive introduc­
tion to diagrammatical visual programming languages and the teclmology
of automatic generation of such languages. It covers a broad range of con­
tents from the underlying theory of graph grammars to the applications in
various domains. As Kang points out himself, this book is not about how
to program visually. Rather, it is about what are visual programming lan­
guages, and how such languages and their underlying foundations can be
usefully applied to other fields in computer science that need graphs as the
primary means of representation. The book gives a comprehensive treat­
ment of graph grammars and their various applications. The Reserved
Graph Grammar (RGG) formalism is extended to Spatial Graph Grammar
(SGG), while both being relational grammars, by integrating the spatial
and structnml specification mechanisms in a single framework. What is
unique about this book is the extensive discussion of several important ap­
plication. areas of visual languages and graph grammars, including multi­
media authoring and presentation, data interoperation, software engineer­
ing and web design. Thus the book can be used in a graduate oourse on
visual. programming languages and applications.

I have known Kang for many years, but I only found out he is also an artist
when he asked me to write the foreword for his book and disclosed to me
that the cover design is from one ofhis paintings. Small wonder Kang is so
persistent in his research on visual languages! His book is an important
oontribution to the growing collection of textbooks and monographs on
visual. languages.

Shi-Kuo Chang

Department ofComputer Science
The University ofPittsburgh
Pittsburgh,. USA



Chapter 1 Introduction

1.1 Visual Languages and Programming

Visual communications have existed as long as the history of mankind,
People communicated through symbols and drawings long before spoken
languages have been developed Carrying specific meanings. or semantics,
those symbols and drawings may be considered visual lan~I, that
serve effective communication purposes. In a broader sense. visual lan­
guages refer to any kinds non-text:ual but visible human communication
medias, including art. images. sign languages. maps. and charts, to name a
few,

Since the invention ofdigital computers. researchers have been seeking in­
tuitive and effective communication means between human and computers
(Sutherland 1%3). The most important oonnnunication is for human to in­
struct computers what to do and how to do to complete intended tasks in
the mrm of"progrmns".

"Programs describe the computational steps carried out by computer de­
vices, both physical and conceptual, and are the basis fur automatic control
ofa wide variety of:machines" (Graham 1987). Programming refers to the
activities ofconstmcting programs. Programming languages are the means
by which different types ofcomputations are expressed in the programs.

Visual programs are a type of programs that describe computational steps
in two or more dimensional fashion. This is in contrast to the conventional
programs that are expressed textually and considered one dimensional. By
the above definition, a visual program could be a diagram or any kind of
meaninpI1. possibly high dimensional, structures.

V'l8UOl programming refers to a process in which the user specifies pr0­
grams in a two or more dimensional fashion (Burnett 1999). Visual

I Languages are symbol syst.ems, such as the languages ofart (Goodman 1%8).



programming aims at effectively improving the programming productivity
by applying visual technologies to support program construction.

Visual programming languages (VPLs) are the languages that support vis­
ual programming. or the visual languages that support programmmg. This
implies that VPLs are a special class ofvisual languages used. for computer
programmmg. However, the remaining chapters of this book will simply
refer to visual languages. rather than explicitly VPLs, if the programming
context is clear. In many of the application contexts, the term "visual lan­
guage" is more appropriate than the term ''visual programming language".

An important class of visual programming languages is the diagrammatic
one, which is based on object-relationship abstractions (e.g. using nodes
and edges). Frequently used diagrammatic visual languages include Bntity­
Relationship database design languages. data-flow programming languages
(e.g. Petri nets), control flow programmmg languages, state transition
specifications. and so on. Other classes of VPLs include form-based lan­
guages. notably spreadsheet style of languages (Burnett and Gottfried
1(98), and iconic languages based. on iconic theory (Chang et I'll. 1(87).
This book covers a specific family of diagrammatic visuaI languages and
their applications.

Rapid advances of the display and interaction teohnologies have made vis­
ual programmmg an effective and attractive communioation means. VPLs
have been successfully used in several application areas: teaching children
and adults such as KidSim and later Cocoa (Smith et aI. 19(4), program­
ming assistance such as the dataflow programming language Prograph
(Cox and Pietrzykowski 1(85), development of user-interfaoes such as
WlPPOG {Bottom and Levialdi 2005), sketch recognition (Costagliola et
aI. 2006; Plimmer et al. 20(6), etc. VPLs have also been widely used in the
design and analysis of software systems. Well-known examples of soft­
ware modeling and specification languages include UML - the Unified
Modeling Languages (Booch et al. 19(9), automata, Petri nets, etc. In fact,
visual modeling is becoming an inoreasingly important area of research in
visual languages. Since the late 1990s, there has been a dramatic increase
in the literature in visual modeling languages. For pointers to a compre­
hensive literature coverage of the applications of visual languages, the
reader may refer 10 Section 1.4.



1.2 Visual Programming vs. Program Visualization

To explain the visual programming process supported by a VPL, we use a
high level conceptual model to illustrate the roles of the user, user inter­
:ft1ce, and visual program. This model also clearly defines the differences
between visual programming and program visualization. whi.ch play com­
plementary roles in software development (see Prefaee in Zhang 20(3).

We adapt the model ofvan Wijk (2006) that was used to identifY the major
ingredients, costs and pins in the field of visualization. The adapted
model, illustrated in Fig. 1.1, considers the major ingredients of the user,
user-interface, and program, rather than those of the user, l1iaualizaool'l,
and data in the context ofv:isualiza.tion.

User interface User

Fig. 1.1. A conceptual model ofvisual prosmmming and progmm visualization

The boxes in Fig. 1.1 denote con:tainers, and circles denote processes that
transform inputs into outputs. The user is modeled with hisIber knowledge
K about the program to be con.stJ:ucted, or to be understood and analyzed.
The knowledge K is obtained through the user's cognitive capability C,
particularly the perceptual ability in the context ofvisual programming and
program visualization. The knowledge also enhances the cognitive capabil­
ity and plays the key role in driving the interactive exploration E through
the user inter:ft1ce.

Through the user interfitce, the user provides specifications 8 for the pro­
gram to be developed or the algorithms and their parameters to be applied.
Upon the specification supplied, 8 visual program V is displayed and ed­
ited as an image 1. In the context ofprogram visualization, 17:represents the
v:isuaIization of 8 program's properties, such as status, struct:ln"e, interac­
tion among its components, or output results. Its image 1 is perceived by
the user. with an increase in knowledge K as a result.



Program P is what the user is interested. It is to be developed in the case of
visual progrannning, or comprehended and analyzed in the case of pr0­

gram visualization. The program in this conceptual model has a broader
sense than the traditionally understood program as defined by Graham
(1987) .. P can be any ofthe following

• A code sequence conforming to a trOO.itional programming language
such as Java.

• A code sequence conforming to a mark-up language such as XML
which may not necessarily carry any computation, or

• A binary code or data structure generated (e.g. by Ii parser) from. Ii

high-level specification.

As defIned in Section 1.1, visual programming (VP) refers to a process in
which the user specifies programs in a two or more dimensional fashion,
Le. in the direction of Y to P. Program visualization (PV), on the other
band, refers to a process in which certain properties of a program are dis­
played in a two or more dimensional fashion according to the user's selec­
tion of parameters andlor algorithms. The process of PV is clearly in the
direction of P to Y. Usually, a VPL or a VP system aims at easing the
process ofprogram specification 8 through graphical interaction and direct
manipulation with a minimal requirement of the programming knowledge.
The easiness of the specification 8 for a given program. P is measured by
the amount of time T required, represented by dSldt.. While a PV system
aims at maximizing the user's gain in hislher knowledge K abont the pro­
gram P under analysis. The measurement of PV's effectiveness is made
when the user takes time Tto gain additional knowledge K(T)-K(O) about
the program P, represented by dKldt.

An ideal visual software engineering system should support round-trip vis­
ual engineering by incorporating both visual programming and program
visualization. Consistent graphical formalisms in both VP and PV are de­
sirable in order to maintain the user's mental map (Misue et a1. 1995)
throughout the life-cycle of the development. Program visualization, how­
ever, is a topic beyond the scope of this book, and is usually within the
scope ofsoftware visualization (Eades and Zhang 1996; Stasko et at 1998;
Zhang 2003).



1.3 Organization of the Book 5

1.3 Organization of the Book

This book is not about how to program visually, Rather, it is about what
are visual programming languages. and how such languages and their un­
derlying foundations can be usefully applied to other fields in computer
science that need graphs as the primary :means of representation. The re­
mailling ofthe book is organized as the following,

Oraph g:rammars may be used as a natural and powerful syntax-de:linition
formalism for visual programming languages. Chapter 2 (extended and
updated on Zhang et al. 2001a) presents a context-sensitive graph grammar
formalism ealled reserved graph grammar (ROO). which ean explicitly
and completely describe the syntax ofa wide range of diagrams using la­
beled graphs, The parsing algorithm of a reserved graph grammar uses a
marking mechanism to avoid ambiguity during parsing and has polynomial
time complexity in most cases.

Chapter 3 (Kong and Zhang 20048; Kong and Zhang 2004b) presents an
extension of the ROO fonnalism. called Spatial Graph Grammar (SOO).
by integrating both the spatial and stru<:tural specification mechanisms in a
single framework. In addition to nodes and edges. this formalism treats
spatial constraints as 1:1 type of language oonstmcts in the abstract syntax.
With the extended expressive power. semantic and stru<:tnral requirements
can be intuitively specified through spatial notations.

The next four clmpters present some typical applications of visual lan­
guages and graph grammars.

The first application is multiJnedia authoring and presentation. On-line
multimedia presentations. such as news. need to be constantly updated.
There are increasing demands for accessing on-line multimedia documents
from mobile devices such as PDAs. A sound but practical formalism is
needed to support automatic adaptation to the change of media contents.
display environments. and the user's intention. Chapter 4 (Zhang et al.
200Sa) presents a visual language approach to the layout adaptation of
multimedia objects. based on the ROO. The chapter focuses on the issues
and techniques for size adaptation and style adaptation in response to the
change ofdevice requirements and user's interactions.

The next application is data interopemtion. As an increasing amount of
scientific and societal data is accessible as in digital forms and possibly
represented in various styles of XML-based languages, there is a need for
seamless and user-friendly tools that could reuse and integrate the hetero­
geneous digital 811:ifacts. Aiming at providing user-friendly means for



exchange of digital artifacts, Chapter 5 (Zhang et a!. 2001c; Song et aI.
200411; Song et al. 2004b; Zhang et a!. 2005b) presents a lan.guage genera·
tion mechanism that allows graphical <lat.-encoding languages and sche-­
mas to be specified and automatically generated. The generated language
environments can au.romaticaIly verify the syntactical structure ofany con­
structed digital artifacts and, when translation specifications are provided,
automatically translate a sonrce artifact expressed in one encoding Ian·
guage or schema to its equivalent in another language or schema.

The third application is software engineering. Software architecture and
design are usually modeled and represented. by informal diagrams, such as
architecture diagrams and UML diagrams. While these graphical notations
are easy to understand and convenient to use, they are not amendable to
automated verifICation and transformation. Chapter 6 (Kong et aI. 2003;
Kong et at 2005) applies graph grammars to the specification of software
architectures through UML class diagrams and design patterns. These
grammars enable a high level of abstraction for the general organization of
a class of software architectures, and form a basis for various analysis and
transformations. In this approach, software verification is performed
through a syntax analyzer. Architecture transformation is achieved by ap­
plying predefined transformation rules.

The last application is Web design. The design of Web sites has been
largely ad hoc, with little concern about the effectiveness ofnavigation and
maintenance. Chapter 7 (Zhang et al. 2002) presents a general framework
with a h.uman:-Web interface that supports Web design through visual pro.
gnunming and reverse Web engineering through visualization. The chapter
describes the framework in the context of a Web tool, known as HWIT,
which has been developed for a pilot study.

Chapter 8 (Zhang et aI. 2oo1b) presents the design, construction, and ap·
plication of a generic visuallangooge generation environment, called Via.
Pro. The VisPro design model improves the conventional Model-View·
Controller framework in that its functional modules are decoupled to allow
independent development and integration. The VisPro environment con·
slSts of a set of visual programming tools. Using VisPro, the process of
VPL construction can be divided into two steps: lexicon defmition and
gnunmar specification. The former step defmes visual objects and a visual
editor, and the latter step provides language grammars with graph rewrit·
ing rules. The compiler for the VPL is autolnatically created according to
the grammar specification. A target VPL is generated as a programming
environment which contains the compiler and the visool editor. The chap·
ter demonstrates bow to use VisPro by building a simple visualillnguage



and a more complex visual modeling b.mguage for distributed progmm­
ming.

Finally, Chapter 9 summarizes the challenges faced by visual language re­
searchers and provides a future perspective in addressing the challenging
issues and in other application potentials.

1.4 General Readings on Visual Languages

Representative pioneering work in visual programming and visual lan­
guages includes Chang (1911), Smith (1975), and Pong and Ng (1983).
The milestone work of Sutherland (1963) sets a lasting foundation fur
graphical interactions.

There have been several surveys and reviews. mostly in early days ofvis­
nal b.mguage research. including Shu's dimensional perspective (1986).
Myers' taxonomy on visual progranuning. programming by exmnples. and
program visualization (1990). and Chang's tutorial and survey (1987).
More recently. Marriott and Meyer (1997) proposed II classification ofvis­
nallanguages based on grammar hiera:rohies. and Bottoni and Gran (2004)
presented a family of meta-models, expressed as UML diagrams. for clas­
sifying visual languages.

Readers may find collections ofpapers in visual language research in early
years in Chang at at (1986). representative papers in visual programming
environments in Glinert (199011; 1990b). object-oriented visual program­
ming in Burnett et aI. (1995). and visual language theory in Marriott
and Meyer (1998). BlJ11lett (2006) maintains a Web page
(Jmg:llweb,engr.oregonstatp.edu/-bumettlypl,htrnD. which is perhaps the
most comprehensive and updated collection ofreferences,

There had been an annnal conference. the IEEE Symposium on Visual
Languages (VL). that was started as a workshop in 1985 in Hiroshima
University. Japan. and then became the symposium unti12oo2. Due to the
increasing role ofhnman aspects and cognitive science. the conference title
was changed to the IEEE Symposia on Humon-Centric Computing - Lan­
guages and Environments in 2003. organized as three separate symposia.
The title has now been changed to the IEEE Symposium on Visual Lan­
guages and Human-Centric Computing (VUHCC) since 2004. having re­
alized the loss ofthe visual language identity. The most recent symposia in
this series can be found at the following URLs:



• VLlHCC'07. Coeur d'Alene. USA: http://ylhcc07.eees.W8U.edul

• VLlHCC'06. Brighton, UK: http://~.cmis.bDghtQnlac.yk(vlbs.:cI

• VLlHCC'OS. Dallas, USA: bttp:llviscomp.utdaUas.edulvlhccOSI

• VLlHCC'Q4. Rome. Italy: http://vlhccQ4.dsi.un.iromal.itlindex.php

• BCC'03, Aucldand, New Zealand: htt;p:llprQjects.cs.daLcaIHCC031

A less formal and smaller annual forum is the Visual Languages and Com­
puting Workshop (VLC), started in 2002. VLC has always been a satellite
workshop at the International Conference on DistributedMultimedia.

The Journal of Visual Languages and Computing, Elsevier (previously
published by Academic Press), is the premier archivedjoumal dedicated to
the publication of research in visual languages and related topics in visual
computing.



Chapter 2 The Foundation ... Graph Grammars

2.1 Introduction

In the implementation of t:ext'lml ll.I.nguages, fomwl grammars are com­
monly used to fil.cilitate the language understandinsJ and the parser crea­
tion.. When implementing a diagrammatic visual programming language
(in the rest of the chapter, diaanunmatie visual programming languages
will simply be referred to as visual languages). this is not usually the ease.
A visual language requires It formal syntactic definition. which is indispen­
sable for automatic analysis, transformation, and non-ambiguous expres­
sion. Graph grammars with their wen-established theoretical background
may be used as a natural and powerful syntax-definition formalism
(R.ozenberg 1997) and the: parsinsJ algorithm based on Ii graph grammar
may be used to check the syntactical correctness and to interpret the lan­
guage semantics.

One obstacle for the application of graph grammars is that even for the
most :restricted classes ofgraph grammars the membership problem is NP­
hard (Rozenberg and Welzl 1986). Consequently, most of the existing
graph grammar parsing algorithms are either unable to recognize interest­
ing languages of graphs or tend to be inefficient when applied to graphs
with a large number ofnodes and edges.

Another problem is that nearly all known graph gn.m:unar parsing algo­
rithms (Rozenberg and WeJz1l986; Bunke and Haller 1989; Golin 1991;
Kaul1982; Wills 1992; Wittenburg 1992) deal only with context-free pr0­

ductions. A context-free grammar requires that only a single non-terminal
is allowed on the left-hand side of It production (Wittenburg and Weitzman
19(6). A context-sensitive graph grammar. on the other hand. allows left­
hand and right-hand graphs of a production to have arbitrary number of
nodes and edges. Most existing graph grammar formalismB for visual
languages are context-free. Yet not many visual languages can be specified
by purely context-free productions. Additional features are required for
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context-free graph grammars to handle context-sensitivity. It is therefore
difficult for context-free grammars to specify many types of visual lan­
guages.

Rekers and SchUrr (1997) proposed layered graph grammars (WGs) for
specifying visual languages. LGGs differ from most other grammars in
two aspects: context-sensitivity and graph formalism. Being context­
sensitive makes the graph grammars expressive. The graph formalism in
LGGs is intuitive and thus easier to understand and to use than textual
formalisms for specifying visual languages. However, although being ex­
pressive, the layered graph grlmUuar is inefficient in its implementation. Its
parsing algorithm is complicated and the parsing complexity generally
reaches exponential time.

This chapter presents a context-sensitive graph grammar called reserved
graph grammar (ROO) (Zhang 1997; Zhang and Zhang 1997), which was
motivated by the development of a general-purpose visual language gen­
erator (see Chapter 8). Because the targets of the generator are visual lan­
guages, their grammars are better specified using a graph formalism. As a
part of the generator, a visual. editor should be used to create visual pro­
grams based on. the grammar specifications and parsing algorithms should
be automatically created according to the grammar.

The ROO is developed based on the layered graph grammar by using the
layered formalism to allow the parsing algorithm to determine in fmite
steps whether a graph is valid. It uses labeled graphs to support the linking
of newly created graphs into a parsed graph (traditionally called embed­
ding). The node structure enhallOed with additional visnal notations in the
RGG simplifies the transformation specification and also increases the ex­
pressiveness.

An ROO is complete and explicit in describing the syntax of a wide range
of diagrams. Compared to the LGG where the context-graph (Rekers and
SchUrr 1997) must explicitly appear in the production, the embedding
mechanism in the RGG allows the grammar representation to avoid most
of the context-specifications while being more expressive. This greatly re­
duces the expression complexity, and in tum increases the efficiency ofthe
parsing algorithm.

A general RGG parsing algorithm, however, has the exponential time
complexity. This is solved by introducing a constraint into the ROO. It is
not yet clear how this constraint limits the application scope, but we find
that even the grammar of Ii complicated control flow diagram satisfies the
constraint. With this constraint, a parsing algorithm of polynomial time
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complexity can be developed. An algorithm for checking whether an ROO
satisfies the constraint is also developed.

The ROO formalism bas been used in the implementation of a toolset
called VisPro, whicb facilitates the generation of visual languages using
the lexlyacc approach (Cbapter 8; Zhang 1997; Zhang and Zhang 1998b;
Zhang et a1. 2001a).

The rest ofthe chapter is organized as fonows: Section 22 descn'bes a case
study that demonstrates the basic idea of the ROO. Section 2.3 provides a
formal defmition of the ROO funnalism. Section 2.4 defines a selection­
tree condition whicb allows an ROO to be parsed in polynomial time. Sec­
tion 2.5 compares the ROO fonnalism with its predecessor, the Loo, fol­
lowed by the chapter su:mmary in Section 2.6.

2.2 A Case Study

2.2.1 Process Flow Diagrams

We use a process flow diagram (PFD) as an example to illustrate bow an
ROO works. A process flow diagram bas two types of constructs: stmc­
tmed and non-structured. For example, a fork-jom constmet provides a
structure in a diagram, while a send-receive construct does not a:ffeet the
structure ofa diagram. Many diagrams used in computer science have sucb
a mixture ofconstructs, which are difficult to specify using existing graph
grammars except the layered graph grammar (Rekers and Scbftrr 1997).

In the PFD shown in Fig. 2.1, thefork statement splits one thread into mul­
tiple threads (three in the example). There are two send statements that
send different messages to the same receive statement. Assuming syntacti­
cally, a receive statement can receive information ftom any number of
send statements, while a send statement can send to only one receive. A
fork statement can split one thread into any number oftbreads.
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Fig. 2.1. A process flow diagram

We first translate the diagram in .fig. 2.1 into a graphical form whose syn­
tax is suitable for the RGG interpretation. We will call snch a graphical
form a node-edge diagram. The translation is very straightforward as
shown in Fig. 2.2, ignoring all the arrows since the direction is unimpor­
tant in our graph grammar representation. A node in the node-edge repre­
sentation is a two-level stmctnre. Fig. 2.3 depicts an example node called
join. The fIrSt level is the large surrounding rectangle, which is called a .'111.­

per vertex.. The small rectangles embedded in a super vertex are the second
level called vertices. A vertex or super vertex can be connected to one or
more edges. An edge is uniquely determined by two vertices in the in­
volved nodes. ROO does not impose semantic difference between connect­
ing to a vertex and connecting to a super vertex. Th.e translated node-edge
representation ofthe process :flow diagnun is shown in Fig. 2.4.

(a) normal representation
(a) usual representation

(b) node-edge representation
(b) node-edge representation

Fig. 2.2. From a diagram to a node-edge representation
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T

join super vert8lC

Fig. 2.4. The oode-edge form ofthe~ flow diagram

In a node.-edge diagmm. all vertices should be labeled. For simplicity, we
me T (top), B (bottom), L (left), R (right) to label the vertices according to
their positions in a node. Vertex labels uniquely identify the vertices in
eaehnode.
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2.2.2 Graph Rewriting Rules

A graph rewriting mle} also caned a production} has two graphs which are
called left graph and right graph. It can be applied to an application graph
(called host graph) in the form of an L-application ()):' R-app!icatiol1. A
production's L-application to a host graph is to find in the host graph a re­
dex of the left graph of the production and replace the redex with the right
graph of the production. An R-application is a reverse replacement (Le.
from the right graph to the left graph). A redex is a sub-graph in the host
graph which is isomorphic to the right graph in an R-application or to the
left graph in an L-application.

In the case of linear textnal languages, it is clear how to replace a non­
terminal in a sentence by a oorresponding sequence of (non-)tem:linals.
However, with a visual language that has two-dimensional relationships
among the language elements, a far more complicated mechanism is
need.ed to establish relationships between the substitute of a redex and its
adjacent elements.

There are three approaches to embedding a graph into a host graph (Rekers
and Schi1rr 1997):

• Implicit embedding: formalisms such as pioture layout grammars
(Oolin 1991) and constraint multiset grammars (Chok and Marriott
1995) do not distinguish between vertices and edges. Relationships
are implicitly defined as constraints over their attribute values. At­
tribute assignments within productions have the implicit side effect
that creates new relationships to unknown oontext elements. Users
are, therefore, not always aware of the consequences of attribute as­
signments, and parsers require oonsiderable time to extract, from at­
tributes and constraints, implicitly defined knowledge about the rela­
tionships.

• Embedding rules: some graph grammars such as the NLC graph
grammar (Rozenberg and Weld 1986) and the DNECL graph gram­
mar (Brandenburg 1988) have separate embedding rules whioh allow
the redirection of arbitrary sets of relationships from a redex to its
substitute. This approach is easy to implement. However, the em­
bedding rules are often difficult to understand and all known parsing
algoritluns for productions with embedding rules are either ineffi­
oient or imposing very striot restrictions on the left- and right-hand
sides of the productions, Furthermore, embedding rules are only able
to redirect or re-label existing relationships. They cannot be used to
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defme such productions as the one in Fig. 2.S, which establishes new
relations between previously~ted vertices.

• Context elements: context elements can be used to establish the rela­
tionships between a newly created graph and the host graph. This
approach is the easiest to understand, but an unrestricted use ofcon­
text elements may complicate the graph rewriting rules. Further­
more, it is difficult to rewrite elements which may participate in a
statically unknown number ofrelationships.

~
~

'­.-

l:T

selId

1$

4:T

3:mellive

SiB

Fig. 2.5. A graph rewriting rule

The reserved graph grammar combines the approaches of the embedding
mil' and the context elements to solve the embedding problem. By intro­
ducing context information, simple embedding ruIes can be sufficiently
expressive to handle oomplicated programs. Moreover, the wildcards fur­
malism used in the LOG is not needed in the ROO. The following para­
graphs explain our new embedding approach by showing its application in
the graph transformation process. In order to identifY any graph elements
which should be reserved during the transformation process, we mark each
isomorphic vertex in a production graph by prefixing its label with a
unique integer. The purpose ofmarking a vertex is to preserve the context.

We impose an embedding rule which states that if a vertex in the right
graph ofthe production is 1.IIIm8J:'ked and has an isomorphic vertex v in the
redex ofthe host graph, then all edges connected to v should be completely
inside the redex. With the above embedding rule which is usually called
the dangling condition (Rozenberg 1997), each application ofa production
can ensure that a graph can be embedded in a host graph without creating
dangling edges. The examples in Fig. 2.6 illustrate the R-application pr0c­

ess, where some host graphs have isomorphic graphs (enclosed in dashed
boxes) ofthe right graph ofthe production in Fig. 2.S. In Fig. 2.6(a)(1). the
isomorphic graph is a redex. The vertices corresponding to the isomorphic
vertices marked in the right graph of the p.rod.nction are painted gray. The
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transformation deletes the redex while keeping the gray vertices~ as shown
in Fig. 2.6{a){2). Then the left graph of the production is embedded into
the host gm~ as shown in Fig. 2.6(1.'1)(3), while treating a marked vertex
in the left graph the same as a gray vertex that has the same mark. We can
see that the marking mechanism allows some edges of a vertex to be re­
served after transformation. For example, in Fig. 2.6(a)~ two edges from B
to T are reserved after transformation. Note that Fig. 2.6(1.'1)(2) serves only
as an illnstration of"reserving", and is not the result ofa transformation.

(1) (2)

(a)

(3)

(b)

Fig. 2.6. Examples ofthe R-application

(c)

In the above notion of process flow diagrams, a send node is allowed to
connect to only one receive node. We show how such a restriction can be
expressed and maintained in the RGG. The solution is simple: we leave the
send node unmarked in the production. According to the embedding rule,
the isomorphic graph in Fig. 2.6(b) is not a redex because the super vertex
in the send node has an edge that is not inside the isomorphic graph while
its isomorphic super vertex in the right graph is unmarked. Therefore, the
graph in Fig. 2.6(b) is invalid. On the other hand, we allow a receive node
to receive data from one or more send nodes. To support tbis~ we mark the
super vertex ofthe receive node in the production in Fig. 2.5. The graph in
Fig. 2.6(c) is valid according to the embedding rule. There is a redex (in
the dotted box) in the graph, because the super vertex of receive has its iso­
morphic vertex marked in the right graph of the production, even though it
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though it has an edge connected outside the isomorphW graph. Therefore,
the mm:king mechanism helps not only in embedding a graph correctly, but
also in simplifying the grammar definition.

2.2.3 A Graph Grammar for Process Flow Diagrams

The graph grammar shown in Fig. explicitly and preoisely depicts the
syntax of the PFD language. It consists ofa set ofprod:u.ctions, and the J&..
bel <1> identifies Production 1.

The L-applioation defmes the language of 8 grammar. The language is de­
fined by all possible graphs which have only termimIllabels and oan be de­
rived using L-applications from an initial graph (i.e. A). The R-application
is used to parse a graph. If the graph is eventually transformed to an initial
graph after 8 series of R-applications. the graph is proven to belong to the
language. In the sequel, we prove that the R-application can precisely de­
termine the language defined by the L-application for an RGG.

Dy applying the R-application of the RGG in Fig. 2.1 repeatedly to a spe­
cific diagram (ie. a host graph), we can determine whether the diagram is
a process flow diagram. The process ofparsing the PFD drawn in Fig. 2.1
is illnstrated in Fig. 2.8. where a label in an oval describes a possible R­
application order (represented by an alphabetic letter, e.g. c is after a) and
the corresponding production (by a numeric fignre). The notation d:2
means that the redex of Production 2 is applied after the R-applications a,
b, and c have been applied. The R-applications may be applied in different
orders but will produce the same result.

In Fig. 8(a), the five sub-graphs in the dotted boxes are possible redexes,
which can be applied with Productions <6>, <6>, <2>, <2>, and <2> to
produce the graph in Fig. 8(b). Similarly, the graph in Fig. 8(b) can be
transformed into the graph in Fig. 8(c), and so on. Finally, the graph is
transformed into an initial graph. The original diagram is, therefore, a valid
process flow diagram.

The following section presents a formal definition of the reserved graph
grammar.
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<2> assignment<I> axiom

<4> fork stmeture with more than two forb

<5> fork stmeture with one: fork

~LiiiJ ~

<lbreduet:ion

Fig. 2.7. A reserved graph grammar specifYing process flow diagrams
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•

•

(b) {e}

• A.

00 00 ro ~

Fig. 2JJ. Graph transformations (parsing) when productions are applied
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2.3 Formal Definition

2.3.1 Preliminaries

In order to defme the reserved graph grammar and its properties, we will
first introduce some basic concepts, such as graph element, graph, and
isomorphism. We then define the marking mechanism, which allows us to
further deflne a redex and graph transformations including L- and R- ap­
plications.

Definition 2.1 n:=($, V, I) Is a node on a label set L, where

• V is a set of vertices,

• seV Is a super vertex. and

• I: V.....L is an injective mapping from V to L.

A super vertex contains a set of vertices, and itself is a vertex. A label
serves as a type in an ROO. For simplicity, we will use the notations n.V
and n.s to represent the corresponding parts of a node n; and this conven­
tion is applicable to other definitions.

Definition 2.1 Two nodes n1 and n2 are isomorphic, denoted as n1ll:1n:l., iff

• they are defined over the same label set. and

• 3f «f: nl,V.....n2.V Is a bijective mapping) A Wenl.V (n1.1(v)=n2.1(f(v») A

n2.s=f(n1.S»,
The deflnition specifies that two nodes are isomorphic if they have the
same types ofvertices (including super vertices).

Definition 2.3 G:={N, E) Is a graph over a label set L, where

• N is a finite set of nodes over L,

• E!;;N.VxN.V. where N.V= UnV , is a finite set ofedges,
neN

Each edge connects :from a vertex of a node to a vertex of another node
and is defined by that pair ofvcmces.

Not all graphs are meaningful, Only certain types of graphs represent
meaningful visual sentences. A graph grammar can be used to define those
graphs that are valid visual sentences. To specify the graph grammar we
need to define the following concepts.
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DefInition 2.4 A vertex v Is said to be marked, demoted 88 mark(v)=m. If it
Is 888igned an Integer mcalled mark.

Definition 2.5 G:=(N. E, M) Is a marked graph over a label sat L, where

• (N, E) Is a graph over L, and

• M: V~I is a bijective mapping, where N.V. and lis a set of Inte-
gers.

A marked graph bas unique integers in some of its vertices. Different ver­
tices in a marked graph should have different marks. We use mark(v)=m to
indicate that v is assigned an integer m, and ma:rk(v)=::null to indicate that v
is assigned notbing and said to be mmwlred.

DefInition 2.6 Two vertices a and b In two different graphs are equivalent.
denoted as a*b, Iff mark(a)=mark(b) and mark(a}FnulI.

Definition 2.7 Two graphs G1 and ~ are isomorphic, denoted 88 G1l1t:G2.
iff 3f:G1'-+G2 is a bijective mapping such that

• V'neG,.N: nllt:f(n); and

• V'e={va• Yb)eG1.E: f{e)=(f{va). f{Vb»eG2.E.

To apply a production to a graph (called a host graph), we need to find a
sub-graph in the host graph that matches the right graph (or left graph) of
the production. Such a matching sub-graph in the host graph is caned a re­
dex.

Definition 2.8 A sub-graph X of a graph H is called a redex of a marked
graph G, denoted 88 XeRedex{H,G), iff 3f:G~X Is a bijective mapping and
under the mapping:

• XlItOG; and

• VveG.V «mark{v)=null) 1\ V v1eH «e=(f{v),v,)eH v e=(v" f{v»eH)~ e
eX).

This definition specifies that a sub-graph X ofa graph H can be a redex of
a marked graph, G, ifand only ifX is isomorphic to G and every vertex in
X that is isomorphic to an mmwlred vertex in G should have edges c0m­

pletely inside X.~ definition ofa redex eliminates the possibility ofany
dangling edges resulted from a transformation.

A redex is always related to a mapping function and we will not specify
the mapping function ifthis is clear in the context.

Definition 2.9 A produc:tion p:={L, R) Is a pair of marked graphs over the
same label set, where L:=(Nwft., M) and R:=(NR, ER. M).
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A pair of marked graphs in a production has the same mark set. Th.ey are
called left graph and right graph respectively.

When a production is applied to a graph, the graph is said to be trans­
formed by the application.

Definition 2.10 Let X be a redex of G in H determined by a bijective map­
ping f:G~ X, If G and G' are the left a.nd right graphs in a production, then
the transformation of H to H' after replacing X in H by G' Is defined as fol­
lows:

1. add G' to H,

2. \:NeG'.V if 3veG.V such that v=v', replace v' with f(v) (called a re-
served node), then delete v', and

3. delete X from H except the reserved nodes.

The result of H with above operation is H', denoted as H'=Tr(H, 0, 0',
X).The second step ensures that the edges connecting the vertices which
are isomorphic to the marked vertices in 0 are reserved.

Based. on the above definition of transformation, the L-application and R­
application can be defined as follows.

Definition 2..11 An L-application of a production p:=(L, R) to a graph H is a
transformation H'=Tr(H, L, R, X), where XeRedex(H, L), denoted as
HH)(H'.

Definition 2.12 An R-applicatlon of a production p:=(L, R) to a host graph
H is a transformation H'=Tr(H, R, L, X), where XeRedex(H, R), denoted as
H~xH'.

3.2 Reserved Graph Grammar and Its Properties

We now defme the reserved graph grammar and some of its properties.

Definition 2.13 A reserved graph grammar gg is a tuple (A, P, T, N),
where A is an initial graph, P a set of graph grammar productions, T a set
of terminal labels with ~eT (we define all edges to have the same label ell,
and N a set of non-terminal labels. For 'Vp:=(L,R)eP and 'VleTuN:

1. R is non-empty;

2. L and R are over the same label set TuN;

3. lelt where Ltc{Lo, ..., Lolls a global layer set and LOll •..11 '-0=0; and

4. L<R with respect to the following order of graphs:.
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G<G'<=>31:IGI, <IG'IIAV'j<i: IGIFIG'b with IGlk defined as I{ x I x e G 1\

layer(x)=k}l.

The last condition guarantees that a diagram can be parsed in finite steps
with the grammar (Rebrs and Schttrr 19(7).

For simplicity, siven an ROO gg:=(A, P, T, N), we use the notation
XeRedex(H) to denote 3p:=(4R) eP A 3X:( X e 1tedex(H, R) v
XeRedex(H. L». when this is clear in the context.

We denote the sequence of intermediate derivations HHX1Hh HIH
X2Hl,

H XnH u. ,xIH X2 XnTT • • 1 u. ,XL.Xnu W.... n_IH n as nJ"""'I' IH... H.t1n, or sunp y nJ"""'I' ,L'n. e use

HH*Hn to denote HHxl•.XnHn, where n may be 0 in which case H=Hn and

HHH. This notation is also applicable to the R-application ~.

Definition 2.14 Let gg:=(A, P. T. N) be an RGG. Its language L is defined
by L(gg)={GI A H' G. where G contains only elements with terminal la­
bels}.

We now prove that the R-application can determine whether a diagram is a
language defined by a reserved graph grammar.

Lemma 1.1 Let gg:=(A, P, T, N) be an RGG. 3X1:H ....x1H1=> 3~:H1' ...~X2H.

Proof: Let XI be a redex determined by a production p:=(L, R). According
to the definitions of the ROO and the transformation process, if 3Xl:H
~xIHh then HI has a redex Xl, which is transformed from Xl and is de­
termined by R. Hence we have 3Xl:Hl~X2H'. But according to the trI:Jns..
formation process, we have Ir~H. So 3Xl:Hl~X2H.

Lemma 1.1 let gg:=(A, P, T, N) be an RGG. 3X:H-+xH1 =>3X':H1HX"H.

Proof: Similar to Lemma 2.1.

Lemma 2.3 Let gg:=(A, p. T, N) be a graph grammar, if AH*G then G -+*
A-
Proof:

,., Xl X2 XlJr, Xn' XI"AH G => AH GIH G;z:I-7...H v=> G~ Gn.h ...,~ A (Lemma

2.1)

=>3G~*A.

Similarly we have:

Lemma 2.4 Let gg:=(A, P, T, N} be a graph grammar, if G -+""A then A H*
G.
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Theorem 2.1 GeL(gg) Iff 39l:G~!Jt A, where 9l is a list of redexes.

Proof: it is straightforward from Lemma 2.3 and Lemma 2A

Theorem 2.1 states that R-applications determine exactly the language de~

fmed by L-.applications. This theorem indicates that if one can find a pars­
ing path (i.e. 91) which transforms a graph to the initial graph, the graph is
valid. A recursive algorithm is needed for parsing, which is rather ineffi­
cient for parsing a large graph.

2.4 Graph Parsing

Parsing is a process that attempts to reduce a sentence according to a
grammar. A reduction (R-application) is performed when a production is
applied. Parsing a graph may be more complicated than parsing a piece of
text.

2.4.1 A Parsing Algorithm

The process of parsing a graph with a grammar consists of: selecting a
production from the grammar and applying an R-application ofthe produc­
tion to the graph; this process continues until no productions can be ap­
plied (called a single parsingpath). If the graph has been transfonned into
the initial graph after R-applications, the graph is valid (Le. the parsing
succeeds); otherwise, the above process is repeated with different selec­
tions (i.e. different parsing paths). If aU the possibilities have been tried
without success, the graph is invalid.

The first stage of any graph parsing algorithm consists of searching in a
graph to find a redex of any production. When such a redex is found, the
question arises whether the production should be applied or not. The ap­
plication of one production may inhibit the application of another produc­
tion and it subsequently causes the entire parsing process to fail. Therefore,
every production instance represents a choice point in the algorithm.

Carrying out the above parsing process is time-consuming as it needs to at­
tempt the R-applications for all productions. We have developed a simple
parsing algorithm, called selection-free parsing algorithm (SFPA), which
only tries one parsing path, as shown in Fig. 2.9. SFPA is effective for an
RGG only in the case that, when parsing any graph with SFPA. if
one parsing path fails. any other parsing paths will also fail.
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PaFSlng(Graph host){
whlle(host!=nulI){

matehed=false;
for all peP
{

redex=F1ndRedexForR(host, p);
If(redexI=null){

R..appllcation{host,p, redex);
matched=true;

}
}
if(matehed==false){

print("lnvalld");
exIt(O);

}
}

}

Fig. U, The selection-free parsing algorithm

More fmmally, only those RUGs with selection-free productions can use
SFPA, where the selection-free property for a production set is defined as
follows.

Deflnltlrm 2.16 Graph G Is a merger of graph G, and graph G:b If

• G, and G2 are sub-graphs of G,

• VVeG,V: veG,'vv veG!.V, and

• VeeG.E: eeG"Ev eeG2,E.

Definition 2.16 Let G, and G2 be graphs, merge{G" G2) Is a set of merg­
ers of G, and G2.

In the following definition, we will use p.R and p.L to represent the right
graph and the left graph ofthe produOOon p respectively,

Deflnltlrm 2.17 Let P be a set of productions. P Is S8Iection.free, If for any
p,eP, P2eP, Rh ~, L

"
and L2 are graphs Isomorphic to P1,R. P2.R, p,.L,

and P2.L respectively, and VGemerge(R
"
~) 1\ R,eRedex(G, p,.R) 1\

~eRedex(G,P2.R), we have 3Ga, Gab> Gb, Gt.: Ga=Tr(G, P1,R, p"L, R,) 1\

GarTr(Ga, P2.R. P2.L, R2l 1\ Gb=Tr(G, P2,R, P2.L, ~) 1\Gt.=Tr(Gb> P1,R,
p,.L, R,) I\~ba'

The definition specifies that a production set is selection-free if a graph
with two redexes corresponding to two productions' right graphs is applied
by the two productions in different orders, the resulting graphs are the
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same. Aecording to this definition, an algorithm for cbeclcing whether a re­
served graph grammar has a select-free production set can be developed.

To check whether a production set is selection-ftee, we need to check all
the possible combinations of any two production's right graphs. If one
combination does not satisfy the defmition, the production set is not selec­
tion-ftee. Fig. 2.10 shows examples of the checking process. In Fig.
2.10(1), two copies (enclosed in dashed boxes) of the right graph of Pro­
duction 6 are merged. According to the embedding rule, different orders of
the a-applications to the redexes (i.e. the copies) result in the same graph.
Fig. 2.10(2) appears to be merged by the right graphs of Productions 4 and
5, but the embedding rule determines that no redex of Production 5 exists.
So the productions satisfy the selection-free condition.

(2)

Fig. 2.10. Examples ofchecking the selection-free condition

The production set of the reserved graph grammar illustrated in Fig. 2.7 is
selection,..free under the definition, so we can use SFPA to parse any dia­
grams to check if they are valid process flow diagrams. In the following
subsection, we will prove that a reserved graph grammar with. a selection­
ftee production set can use SFPA to parse diagrams correctly.

2.4.2 selection-Free Grammars

The selection-free property of an RGG means that for a valid graph, any
selection of an R"8pplication to the graph can lead to a successful parsing.
Obviously, a selection-free RGG can use the selection-free parsing algo­
rithm to parse its languages. The selection,..free property of a grammar can
be formally defined as:
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Definition 2.1B Let gg:::(A, P, T, N} be an ROO. If V(G-i>'"G,-i>'"A}, for any
XeRedex(Ga, 3G -i>'" GJ -i>x Gtt1-i>'"A}, then gg is said to be selectiorHree,

Definition 2.19 Let gg:::(A, P, T, N) be an ROO. If for any G..;.'"A,
XaeRedex(G) ~eRedex(G) t\~(Xa::Xo}) such that 3(G -:;Xa Ga -i>Xb Gao} t\

3(G -i>Xb~ -i>Xa Gtm}=:>~, then gg is said to be order.,free.

The order~free property is similar to the finite Chureh Rosser property
(Brandenburg 1988) but applicable to coutext~sensitive graph grammars in
that productions are applied to sub-graphs rather than to single nodes. For
simplicity, if GAG', we will use G instead G' in the sequel We now show
that if the production set of an ROO is selection~free. the ROO is sel~
tion~free,

The followiq lemma implies that a redex of a graph defined in an order~

free graph grammar can be applied with an R~application and the graph
can be reduced to the initial graph.

LetIIIfHl 2.5 Let a graph grammar gg:::(A, P, T, N) be order~free, if G..;.'"A
t\3XeRedex(G) then 31:G-i>'"Gr+XGI+1-i>'"A,

Proof:

• G~*A 1\3XeRedex(G) =>3G~XOOl".~)CnA, where n>O. We have
two ca.ses:

• Case I: Xo=X => 3~XOl'-+* A.

• Case 2: Xo:;eX => 3G~XOGl~*A A 3XeRedex(G1) - (Definition
2.19),

• This process can continue:

• 3G~X{)Ol'-+Xl¥·..xmGm~*AA 3XeRedex(Gm)

• wheremsn.

• As n is finite (the property ofthe layered definition). we have

• 3~: G~*Oi~XOl+,~*A

Lemma 2.6 presented below implies that a redex can be applied anywhere
in the R..application process.

LetIIIfHl 2.6 Let a graph grammar gg:::(A, P, T, N) be order-free and
VGo-t'"A, If 3X e Redex(Go} t\ 3Go -i>'" Gn-:;~+1 then 3Go-:;~1'-i>'"Ga+1.

Proof:

• G~"'GlI~XOn+l



28 Chapter 2 The Foundation - Graph Grammars

• ::::>30cr-i>XO01"",Xl0H...---1'Xm-l0,,---1'XOn+1

• ::::>30U-l-+Xn-10 n---1'XGn+l

• ::::>30n,.1---1'XOnl---1'Xn-j On+l -- (Defmition 2.19)

• ::::>30n-2---1'XOn-j,-+Xm-20o'---1'Xm.l0n+J

• ::::>...
• ::::>30cr-i>XOj'...,.XOO:.!'-+...---1'Xn-20n'---1'Xm-j On+l

• ::::>30cr-i>XOj1---1'*On+l'

ThtKJlWD 2.2 Ifgg:=(A, p. T, N) is order-free, then gg is selection-free.

Proof:

• 0---1'*Oi---1'*A AXeRedex(Oi)

• ::::>30---1'*Oi---1'*OJ---1'XOj+l---1''''A -- (Lemma 2.5)

• ::::>30-+*Oi-+XOi+1---1'*0j+1---1'*A -- (Lemma 2.6)

• ::::>30---1'*Oi---1'''Gt+l---1'*A.

ThtKJlWD 2.3 Let gg:=(A.P. T, N}, if P is selection-free, then gg is order­
free and thus selection-free.

Proof:

• Suppose O-+*A AXleRedex(O) A X2eRedex(0). we have 3PleP
A3P2eP so that XI~I.R and XI~I.R.

• Since P is selection-free and (XIUX2)s;:;0, 0 can be transformed by
applying Xl and X:z in any order and the resulting graphs are the
same.

• The transfurmation process derives that '\7'0---1'*A if XI eRedex(O) A
XzeRedex(O) A -,(XI=Xv then 3 0 -+X2 0 1 O2 A 30 -+Xl 0 1'
---1'X2 O2.

• Hence gg is order-free.

• According to Theorem 2.2, gg is selection-free.

Theorem 2.3 says that if the production set of an ROO is selection-free, the
ROO is selection-free and can use SFPA to parse its languages.
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2.4.3 Parsing Complexity

To study the time complexity of SFPA, we const:l:lJet an algorithm Fin­
dRedexForR(G, p) shown in Fig, 2,11, which is the main part of the
SFPA, To explain the algorithm. we ftrst give some definitions,

Redex FlndRedexForR(host,p)
{

node8equence=flndN0de8equellCEl(p,R);
allC8ndldatePflndAlINode8equenoos(host. node5equence);
for all candidateEallC8ndidates
{

redex=match(oandidate, host, p»;
if(redexI=null)

return redex;
}
return null;

}

Fig. 2.11. The algorithm AndRedexForR

Definition 2.20 A node sequence of a graph G is an ordered list of all the
nodeslnG,

Definition 2.21 Let L1=[n11, n12, ,.., nn] and Lr[021, ..., n2ml be ordered
node lists, L1 Is Isomorphic to l2 if m:=:k; 1\ n1fl#02I where IE{1 p", m}.

TheoTem 2.4 The algorithm AndRedexForR(G, p) has O<IGlm) time com­
plexity, where m is the maximum number of nodes In any right graph of a
set of productions,

Proof:

The function flndNodeSequence(p,R) finds a node sequence of the right
graph ofa production p, It lists all the nodes of p.R in a certain order, For
a graph grammar, the number ofnodes in the right graph ofa production is
given, so the function takes 0(1).

The function flndAlINodeSequences(host. nodeSequence) collects all
the possible node sequences from the host, each ofwhich is isomorphic to
nodeSequence, For a graph 0, the number of all possible node se­
quences, each having m nodes, is JCI', where k is the number ofnodes in 0,
So the time complexity for the function findAllNodeSequences is
O(IGI~·
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The function match cbecks whether a candidate in the host is a redex of
the production P. if so, the candidate is returned as a redex, otherwise. a
null is returned. The time complexity for the function. match(candidate,
host, p) is Oem).

As the number of allCandldates is no more than IGlm• the maximum time
taken is O(IGI",.

Theorem 2.5 The time complexity of SFPA is O(IGlm+
1
), where G is a

graph to be parsed by SFPA and m Is the maximum number of nodes of all
the right graphs of productions.

Proof:

Suppose that T(k}=(2CfAo+(2C)k.IAI+...+(2C)Ak.I+Ak is a function and
nemO is an operation applicable to T(k), where At. C and k are integers.
and C>O,~.~. OS; i S; k.

Let T(k).next(i) "'" (2C)k(Ao) + (2C)k.I(AI) + on +(2C)k-i+J(Ai•1) + (2C)k.i(Ai­
I) + (2C)k.j.l(Ai+I+C) +...+ (2C)(Ak_1+q + (Ak+q be T(k) after i execu·
tions ofnextO operation, where At>O, C>O, ~O, we have

T(k).next(i) "'" (2C)kAo + (2C)k.IAI + + (2C)k.H1Ai.1 + (2qk.iAi + (2C)k.i.
IAHI +,..+ Ak• «2Ct-i • (2qk.i.1C - - (2C)C-C) "'" T(k) _(2k.ict"i_2k.i.1Ck.i•
....2Cz-C)

As (2k-iC'.i.2k-i-I~ .....2CZ-C)2 (2k.iCk-i·2k.i.1Ck.i•..._2ct-tCk.i) "'" ct-i(2k-t 2k.i­

1...._2_1) "'" Ck•i >0.

We have T(k»T(k).next(i). (1)

This means 3n:nS;T(k) such that T(k) will be zero after n executions of its
"next" operation.

Let gg:""'CA. P, T, N) be a reserved graph grammar and G-+*A.

A graph G can be mapped to T(k)""'C2C)kAo+(2C)k.IA1+...+(2qAk.]+Ak•
where At""'IGh. k equals to the maximum number of layers, and C is the
maximum number of nodes of all the right graphs of productions.. We de­
note G.T(k) as the T(k) that is mapped from G.

Suppose ~XO'. According to the definition of the grammar layer and the
transformation mIcs. we have O<G', where 3i:IGIi <IO'liA'ifj<i: IGlrlG'b
with IGlk defined as I{xlxeG A layer(x)""'k}l

This means that in the layer i, the element number ofG' is less than the ele­
ment number of G by IGldO'Ii elements. In a layer larger than i, the num­
ber of additional elements are no more than C. So after the transformation,
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G'.T(k) ~2C)k(Ao) + (2C)k.l(A1) + ... +(2Ct·i+1(Ai. 1) + (2Ct·i(Ar(]Gh­
IG'Ii» + (2C)k-i-l(Ai+1+C) +...+ (2C)(Ak-1+C) + (Ak+C) ~ G.T(k).next(i). So
we have 3i:G'.T(k) ~G.T(k).next(i}.

For any graph G, G.T(k)20. so according to (1), G~*Amust fmish within
G.T(k) steps.

As G.T(k)=(2CtAo+(2C)k-1Al+...+(2C)Ak-l+Ak ~
(2C:f(Ao+A1+...+A0=(2qkIGI, according to Theorem 2.4. the time com­
plexity ofthe algorithm SFPA is (2c:tIGI·O(JGI~IGr+l).

We now discuss the space complexity of SFPA. We implement an index
for each element of a graph. The indices are organized as follows: they are
listed in the same array if they refer to the graph elements that have the
same labeL Thus, a graph is a set of arrays. each of which is a list of ele­
ments with the same labeL A nodeS6quence (in Fig. 2.11) am be im­
plemented as a set ofpointers. each pointing to an element ofan array. The
next node sequence am be found by moving pointers in a proper way, and
a candidate ofa redex is the pointer set. In this case, the extra space is un­
necessary except for the pointers. Thus, SFPA has a linear space complex­
ity.

2.5 Improvements over the Layered Graph Grammar

Fig. 2.13(a) and (b) show two productions of the layered graph grammar
for parsing the fork statement, where the elements B1 and T? (wildcards)
are used as the context elements. For instance, B1 means begin, fork, or If.
as shown in Fig. 2.13(c). After a tnmsformation, say R-application, the re­
lationships between the new node Stat and the host graph are determined
by the 81 and T?, which are part of the host graph. New nodes am be em­
bedded into the host graph when they are linked with the matching nodes
labeled with B1 and T1. Without the wildcards, the number ofproductions
required will be multiplied (Rekers and SchOrr 1997).

The productions in Fig. 2.13(a) and (b) lead to ambiguity. For example, if
a graph has a redex of the right graph in the production in Fig. 2.13(a). it
also has a redex of the right graph in Fig. 2.13(b) because the right graph
in Fig. 2.13(a) is a part of the right graph in Fig. 2.13(b). Applications of
the productions in LOGs with different redexes may produce different re­
sults. A complex algorithm is then needed to ensure that all possible appli­
cations ofproductions are attempted.
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I«"prj(t Stat~ Join I ::=

(a)

"­..-

(Il)

81E {begin, fork, ifI

T?E (end, amgn, fork,join., send,. receive, if}

s1E{n, f, t}

(c)

Fig. 2.13. Productions in a LOCi with different embedding mechanisms

A reserved graph grammar can avoid the ambiguity. As a result, its parsing
algorithm can be simple and efficient. Therefore, compared with the lay­
ered graph grammar (Rekers and SchUrr 1997), the reserved graph gram­
mar has the following three major improvements:

• it avoids the use ofwildcards,

• it simplifies the specification through an embedding rule, and

• parsing an unambignous reserved graph gnmnnar can be done in
polynomial time.

As discussed earlier, the Reserved Graph Grammars (RGGs) are based on
LGGs, and improve over WGs. Apart from the improvements discussed
above, the major differences between the RGG formalism and the LGG
formalism are that the former can be implemented more efficiently using
the presented parsing algorithm; and that it uses simple embedding rules
rather than context elements (as used in the latter) so that grammar specifi­
cations are simplified The following table compares an the discussed
grammars with RGGs.
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Additional restrie- Com­
tioD plex­

it)'

Gram­
mar

lNS-RG non-
terminal

Max two 1 tel- im· finite set ofaun1mte
(non-) tl:!r- minal plicit values
minals

graph no layering

graph

poly­
nomial

poly­
nomial

poly­
nomial

The six attributes used to distinguish various gra.1l1Dl8I'8 in the table are
proposed by Rekers and SchUrr (1997). They serve a useful purpose in
comparing these g:mmmars. Minas (1998) has adapted ROOs to the
DiaGen hypergmph env:ironm.ent (Minas and Viehstaedt 1995). The selec­
tion-free constraint imposed in ROOs is relaxed to allow more types of
hypergraphs to be specified. However, additional information has to be
provided in the form ofnegative application conditions (NACs). A produc­
tion with a. matching left hand side is not applicable if one of its NACs is
satisfied. The addition of NACs modifies the original grammar and it is
unclear how additional complexity is introduced into the parsing process.

2.6 Summary

This chapter has presented the reserved graph grammar (ROO), which can
be used to specify grammars of diagrammatic visual languages. An ROO
is a collection of graph rewriting mles represented labeled graphs. It
is context-sensitive and its right- and left-graphs can have an arbitrary
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number ofnodes and edges. The grammar uses an enhanced node structure
with a marking mechanism in its graph representation. It is this structure
that makes an ROO effective in specifying a wide range of visual lan­
guages and efficient in parsing a certain class of visual languages. Al­
though the time complexity of the parsing algorithm for a general RGG is
exponential, parsing a selection-free reserved graph grammar can be done
in polynomial time. The ohapter has presented such a polynomial time
parsing algorithm and proved its time and space complexities. To ensure a
reserved graph grammar to be unambiguous, we also presented a ohecking
criterion and proved its correctness.

There have been some applications of RGGs, for example. for generating a
visual language fur modeling distributed systems (Zhang and Zhang
1998a). and those to be described in Chapters 4 through 7. A wide range of
applications. such as interpreting hand-written mathematical notations
(Blostein and Grbavec 1991). have been reported for using layered graph
grammars (Blostein and Schtirr 1998), upon which RGGs improve.

7 Related Work

Growing interest in visual languages has motivated research in the specifi­
cation and parsing of multi-dimensional structures. Several specification
methods have been proposed and proven to be useful in practical applica­
tions. Examples include Web and Array Grammars (Rosenfeld 1976), Po­
sitional Grammars (Costaglioga et at 1993), Relational Grammars (Wit­
tenburg 1992; Ferrucci et al. 1994), Unification Grammars (Wittenburg et
al. 1991), Attributed Multiset Grammars (Golin 1991), Constraint Multiset
Grammars (Marriott 1994), Layered Graph Grammars (Rekers and Schtirr
1997), and Attributed Graph Grammars (Ermel et al. 1999).. In this section,
we discuss some ofthe related grammars and compare them with Reserved
Graph Grammars.

The relational grammars of Wittenburg (1992) are restricted to relational
struotures, where relationships of the same type define partial orders. Fer­
rucci et al. (1994) proposed INS-RG grammars, that are adapted from the
Boundary NLC graph grammars of Rozenberg and Web:1 (1986). The
right-hand sides of productions in a INS-RG grammar may not contain
non-terminals as neighbors in order to guarantee local confluence. Parsing
can be done in polynomial time if the generated graphs are all connected
and the maximum number of edges at any single vertex is known in
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advance. This latter restriction also applies to Brandenburgts DNELC
graph grammar (1988).

Marriotfs constraint mnltiset grammars (1994) provide context elements.
Introducing "not exits" constraints prevent any possible overlap between
the right-hand sides ofproductions, but also make syntax specifications de­
terministic. Golin's (1991) picture layont grammars allow productions with
one non-terminal on the left-hand side and at most two terminals or non­
terminals on the right-hand side.

Rekers and SchOrr (1997) gave an excellent introduction to context­
sensitive graph grammars. They argued that it was difficult for the afore­
mentioned grammars to generate abstract syntax graphs for connected Ell
diagrams. They proposed a context-sensitive grammar formalism, known
as layered graph grammars (LOGs) (ReJrers and SchOrr 1997). which can
specify a wide range of visual hmgnages. The graphical specifications of
LOGs are more intuitive and easier to understand than textual grammars.
Bottom et al. (2000) improved the parsing efficiency of the LOG style of
graph grammars by detecting conflicts through critical pair analysis.

Attributed Graph Gram:rmu's (Brmel et al. 1999) integrate graph transfor­
mation rules with Java expressions. The AOO language implements the
single pushout algebraic approach (Ehrig et al. 1997) for graph transforma­
tion, that differs from the algorithmic approach in LOGs. It combines at­
tributed graph transformation with negative application conditions to allow
users to precisely specify a sub-graph that lllUSt not be present in order to
perform It graph transformation (Habel et al. 1996; Ermel et al. 1999).

Motivated by applications such as modeling and re:factoring for object­
oriented progrw:mning. Drewes et al. (2006) recently proposed adaptive
star grammars. which use the meta-m.odel concept to allow multiple nodes
to be copied arbitrarily often. The membership problem for a certain sub­
class ofsuch grammars is shown to be decidable. A parser for adaptive star
grammars has also been proposed (Minas 2(06). though not implemented
at the time of writing this book:. Minas (2006) speculates that the parser
would show exponential behavior but may in practical applications require
polynomial time similar to the parser for hyperedge replacement grammars
in DiaGen (Minas 2002).
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3.1 Introduction

Rather than expressing sentences in sequences of cbaracters. visual pro­
gramming languages allow programs to be expressed in visual sentences in
a multi-dimensional fashion. As noted by Reker and SchOrr (1996), the
physical layout and the meaning ofa diagram are two important aspects of
a visual sentence, A spatial relations graph (SRG) specifies spatial rela­
tionships between pictorial objects while an abstract syntax graph (ASG)
provides structural :information in a succinct form. Consequently in their
approach. a visual sentence is specified through two intermediate graphs,
One is geared toward visualization, and the other toward interpretation
(Reker and SchOrr 1996).

Some researchers specify the interdependency between the concrete syntax:
and the abstract syntax using graph grammars, For example, a grammatical
approach is proposed to maintain a correspondence between the abstract
and spatial aspects ofVPLs (Reker and SchOrr 1996). Aiming at syntax: di­
rected layouts. Brandenburg (1995) proposes the layout graph grammar,
which directly draws a grammatical rule on a plane and determines its spa­
tial configuration aecording to positions ofobjects in the plane,

Those approaehei explore spatial relationships from the layout perspective
without direct contribution to the inte.rpretation ofa graph. Due to the vis­
ual nature ofVPLs. we believe that the spatial information should not only
contribute to the representation, but also directly represent stJ:uctIlJ:a1 and
semantic requirements over involved objects. For example. a spatial con­
figuration can visually and explicitly hold the information defining an or­
der over a collection of objects (e,g. the left one has a smaller index than
the right one). By extending the context-sensitive graph grammar formal­
ism the Reserved Graph Grammar (RaG) presented in Chapter 2 (Zhang
and Zhang 1997). a Spa.tial Graph Grammar (SGG) (Kong et aI. 2006) in­
troduces spatial relationships into the abstract syntax, and integrates both
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the spatial and structural specification. mechanisms in.to a single frallle­
work. In other words, in. addition to defming connectivity alnong nodes,
the fortnalism is able to specify semantic and s'tr1retural requiretnents with
spatial inforlnation.

This chapter presents a spatial graph grammar (SGG), which in.troduces
spatial oonstmin.ts to the abstract syntax. In other words, both the connee-.
tivity and spatial relationships construct the pre-condition ofa graph trans­
formation. With the extended expressive power, the SOO is capable of in~

tnitively and visnally specifying semantic and stmctnral requirements
through spatial infon:nation rather than throogh attributes. The sao is fun­
datnentally different from other graph grammar formalisms by in.troducing
spatial information in.to the abstract syntax, and can fmd tnany applica­
tions, such as adaptive layout of lnUltitnedia documents to be presented in.
Chapter 4.

The sao is enhanced from the Reserved Graph Grammar (RGG) (Zhang
and Zhang 1997) presented in the previous chapter, with a spatial exten­
sioo. In particular, spatial relationships are in.tuitively specified without
sacrificin.g the expressiveness of structural specifications. In SUlnlnary,

tightly integrating spatial and abstract specifications, the sao can bring
the following benefits:

• Correlating spatial configurations with abstract structures, the sao
can generate a syntax-directed layout, and perforln an adaptive pres­
entation based on the existing layout;

• The SOO can naturally specify semantic and structural requirements
through spatial relationships rather than through attributes or edges;
and

• With. the belp of spatial specifications, tbe parser of the sao per~

fOrlnS in. polynolnial tilne with an improved parsin.g complexity over
its non,.spatial predecessor, i.e. the Reserved Oraph Orammar.

3.2 The Spatial Graph Grammar Formalism

This section in.troduces the spatial graph grammar formalism within a ge­
neric visual environtnent supporting spatial progratnming.

Being in.herent in. the multiple-dimen.<;ional fashion, the sao incorporates
spatial notions into the abstract syntax with nodes and edges.. In general.
the description of a scene of objects in space in.volves spatial aspects that



have an expression both in terms of inherent characteristics of each objeet
and in the context of other objects. The size and shape of an object illus·
traie its internal properties while spatlaJ relations express configurations
among distinct spatial objects. Based on several well~stab1ished models
(Clementini et a1. 1993; Frank 1996; Hernandez et al. 1995), the SOG sup.
ports spatial relations in four aspects, i.e. topology, direction, diatance and
alignment. Developers can cns:tomize the granularity of spatial relation·
ships upon the application doma:in. and design. a set of graphical notations
to visually denote spatial relationships.

3.3 Spatial Relationships and Representations

When considering adding spatial notations to the ROO forma:lism, we gen·
emllyaimat

• Retaining the original ROO syntax and semantics, and
• Introducing mini:m.al additional notations that are intuitive for spatial

specifications.
We propose five categories of spatial relationships between any two given
objects: direction, distance. topology, alignment, and size. When used to
specify desired layout ~ammgement, the relationships can be used to
specify changes to be applied during graph transformation. The spatial re·
lationships are currently restricted in Iii two-dimensional multimedia design.
space. It is entirely feasible that such relationships and notations can be ex·
tended to a three·dimensional space for specifying a virtual reality envi­
ronment.

All the spatial relationships are dermed between two objects, one referred
to as the primary object and the other as the reference object. When dig.
cussed in the context of a spatial grammar, media objeets are represented
and referred to as nodes in grammar productions as termed in Chapter 2.

3.3.1 Direction

To represent the relative direction between two nodes, each node is ar·
ranged as a 3x3 grid in dotted lines inside the node. as shown in Fig. 3.1.
The central region (n:Jatked by C) represents the node itself. Surrounding
the central region, the eight grid regions represent eight directions: N
(North), NE (Northeast), E (East), SE (Southeast), S (South), SW (South­
west), W (West), NW (Northwest), in clockwise order. Each of these
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directions indicates the relative position of the reference object connected
to the current object (primary object). The boundary of the area occupied
by the reference object is outlined by dotted lines surrounding the primary
object.

NW NE

.-------~~r>7~~~-------.

W

--------"!--..r...:...Iooo........:..Iooo-f--------.

sw s BE

Fig, ':4.1, Notation for direction relationships

Each ofthe eight direction regions may include more than one vertex. The
objects that are connected to a primary object through the vertices of the
same region are in the same direction. For instance} the East region of the
node in Fig. 3.1 has two vertices, EI and E2, if there are two nodes con·
nected to El and E2 from the right side ofthe present node.

3.3.2 Distance

The distance between two objects' centers measures an important class of
spatial relationships. To specify the distance relationship, we prefix a "+"
to the vertex label to indicate a long (or increased) distance to the object
that the vertex connects to, ..." to indicate a short (decreased) distance, and
blank to represent a distance not emphasized (or not changed). Four spe­
cial cases of distances are treated separately as topological relationships
due to their importance in spatial reasoning.

3,3.3 Topology

We can generally define four topological relationships between two nodes:
1!on-overlopping,overlopping, touching, and containing. Assume thatDx is



the set ofall the points on an object x, and B;& U;;DJ is the boundary point
set ofx. Considering a primmy object a and a reference object b and DIl n
Db =R, four topological relationships are defined as the following:

• a~M~w~~p~milibMR=~

• a ~ overlapp~ wiili b iffR# rJ>, and further
o a is touching mili b MRs;;; (Be n B,); or
o a ~ containing b iffDb S;;;DQ>

Using a rectangle to represent an object, Fig. 3.2 shows the four types of
topological relationships. Non-overlapping indicates iliat iliere is no com­
mon point on boili involved objects. Overlapping means iliat iliere are
common points between the two objects. It is represented by dotted lines
on the boundary of ilie overlapped area. We define touching and contain­
ing as two special cases ofoverlapping. Ifcommon points only exist on ilie
boundaries of two objects, the objects are touching mili each other. The
touched part is represented by a dotted line. Conttdmng means iliat all ilie
points on one object belong to the oilier. In Fig. 3.2, the boundary ofan ob­
ject is totally dotted, indicating that ilie object is contained in the oilier ob­
ject

3.3.4 Alignment

Two objects may be aligned vertically or horizontally, along the directions
ofN, S, WorE. In horizontal direction, we define three different horizon­
tal alignment cases for each object, i.e. top alignment, bottom alignment
and center alignment, giving a total of 9 different alignment relationships
between any two objects. The alignment relationships in vertical direction
are similarly defined. The boundary of a node is divided into 12 segments
according to ilie 3x3 grid A bold segment is used to indicate ilie alignment
relationship. Fig. 3.3 illustrates three most common alignment relation­
ships.

3.3.5 Size

For example, transforming a multimedia document ftom a desktop Web
page to a PDA display may involve size changes ofvarious media objects.
To represent the changes, we mark the node's center box mili a "+" to in­
dicate iliat the object ~ large in size (or zoomed in to become larger), "-"
to indicate small in size (or zoomed out to become smaller), and blank to
indicate a size not emphasized (or unchanged).
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(a) Notation

Fig. 3.3. Alignment relatiOl1ll in
horimntal direction

3.3.6 Event Driven

As discussed above, the spatial relationships can be used to speci:fY static
layout structure or some predetermined structural changes.. Similarly, the
SWITCH construct in SMIL (W3C 2001) allows different layouts to be
applied upon different pre-determined conditions, which are defined
through text attributes. Many media players, however, do not provide suf­
ficient support for the specification and run-time evaluation ofapplication­
dependent test attributes. On the other hand, the grammatical approach al­
lows great flexibility to associate domain-specific triggering conditions
with prodnctions wi.thout relying on the media player's capability. There
are increasing demands for providing users a sense of focusing, realized by
interactively changing the details of certain parts of a multimedia doou­
ment during viewing. Such a mechanism is called interactive semantic
zooming (Marriott et al 2002).

To address the dynamic issues, we classify graph produotions into condi­
tional and unconditional ones. A transformation is performed on an uncon­
ditional production when a redex is found in the host graph that matches
the right graph of the production. A conditional production can only be
triggered by a specific event, such as the change of the device capability,
the user's interaction etc. Since graph transformations can be per­
formed according to dynamic events, such as user inputs, the appearance
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ofa multimedia document may be adjusted by triggering such conditional
productions when the layout stmcture. user intemction method, and display
environment need to be changed. More flexible than SMIL SWITCH, con­
ditional productions are able to handle user interactions, and individually
produce local effects.

3.3.7 Syntax-Directed Computations

As described in Chapter 2, the RGG supports syntax-diTected C01llp\1tao­
tions by associating data and operators to nodes in productions in terms of
attributes and actions. Inherited from the ROO, in SGGs. attributes can
sopplement graphical and qnalitative specifications by providing precise
quantitative values. For example, to shorten the distance between two con­
nected nodes by halt: we can attach the following action code to the corre­
sponding production:

ActIon(MMGraph g) {
int OrlginalDlsbmce =Q.left - P.r1ght;
P.rlght = P.rlght + OrlglnalDistancel4;
Q.left =Q.left - OrlglnalDistancel4;

}
In summary. a visual representation defines an approximation of layout
while attributes and action codes sopplement qualitative specifications
with precise quantitative information and associated computation.

3.4 Formal DefInitions

Entities of real worlds are represented by nodes. which are organized in a
two-level hierarchy in the same Whion as the ROO presented in Chapter
2. In a node, each vertex is uniqnely identified, and serves as a oonneoting
point of an edge representing a logical couneetion. The type of an edge is
implicitly determined by the labels of the vertices that connect the edge
(annotations illustrating types ofedges can be attached to the edges though
it is not necessary). For example, a node labeled /fas illustrated in Fig. 3.4
contains three vertices over the vertex label set UN ={T. L. R}.
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Definition 3.1: Given a vertex label set ON a node is a tuple N = <vN, fl,
nameN

), where VN is a set of vertices. fl : V'N....., ON is the I.abellng function,
and nameN Is a node label determining the type of node N, Moreover. 'r/ Vh
V2evN, ,N{V1)= fl(v2) ::::> V,= V2.

Functions can be combined using the composition operation denoted by
"0", Forf:R--+S andg:S--+T, gofis the function with domain R and codo­
main Tsuch that for allxeR,goJ(x) =g(f(x)).

Definition 3.2: Over two nodes Nand N', the structural isomorphism g:
VN-+Vtl Is a bijective function, which preserves the labels of vertices, I.e,
satisfying ~o 9 = fl. Two nodes are itJomorphilJ denoted as N-N', Iff they
have structural Isomorphism, and name~name .

This definition determines that two nodes are isomorphic if they have the
same types ofvertices,

Definition 3.3: Over a set of objects 0, a spatial signature Is a function f:
o )( 0 -+ SR, where SR is the set of spatial relationships.. f maps a pair of
nodes to the spatial relationship between them.

Definition 3.4: A graph is a tuple G:= <NG, EG, vG, sG, tG• mG, gG), where
NGIs the set of nodes. EGis the set of edges, VGIs the set of vertices oon­
structlng NG• sG:EG--+vG and tG:EG.....,vG are two functions that preserve tile
two connecting points of an e~e, mG

: VG.....NG Is a function that maps a
vertex to its associated node. 9 Is the spatial signature.

Because ofthe multi-dimensioual nature, the embedding problem in visual
prognumning languages, i.e. establishing connections between the sur~

rounding of a replaced su~graph and a new sub~graph, does not exist in
textual languages. The marking technique (Zhang et at 2001a) developed
in the RGG (see Chapter 2) addresses the embedding issue. A marked ver~

tex is assigned by a unique integer,. and preserves its associated edges con­
necting from the replaced sub~graph to the outside.

Definition 3.5: mark: V -+ I is a partial function1, where V is a set of verti­
ces, and I is a set of Integers. A vertex v is marked iff mark(vH. Moreover,
within a graph G. for 'r/v,,1I2 e vG, mark(vl)= mark(v2) implies v,=v:/:.

1 A partial fI:lttetion on a set Y is simply a function whose domain :is a subset of Y. Iff iSJ a
partial function on Yand \IE JI, then we writefM~ and say that j/''v) is defined to indicate
that 11 is in the domain off, if 11 is not in the domain off, we writef(v) r and say thllt.lfv) is
undefinell
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DefInition 3.6: Two vertices a and b In two different graphs are equivalent.
denoted as asb, Iff mark(a) =mark(b) and mark(a)!.

Definition 3.7: A marked graph Is a tuple G:= <NG, eG, V', sG, tG, mG, gG,
markG>, the first seven elements are the same as those in Definition 4, and
markGIs a marking function.

Having introduced the basic concepts, this section defines the notion of
comparisons between graphs.

Definition 3.8: A graph, morphl8m f: G-G' defines a pair of functions <I':
~ _ Na', F: eG_ eG

), where I' and F are bijective functions, and p're­
serve the structural s~tions i.e. g f 0 mG0 sG =mG' 0 sa' 0
F SO =sG'o F mG0 sG tlrI ma'o s'fJo Fro to =mG' 0 ta' 0 F to =to'oF: mGotGlIlIm'a'otO'oF.' ,

DefInition 3.9: 9Ver a marked graph G and a graph G', a spatial mor­
phism f: NG_NG Is a function that preserves the spatial relationships, I.e.
satisfying Vnl, n2 eNG: ~(f(n,), f(f12»-R,(n1,n2). where R1and~ are boo­
l.esn expressions for verifying the spatial, relationships r1=gG(n"f12) and
rrgB'(f(ndJ(na}) correspondingly, gG and gG are the spatial signatures of G
and G' respectively.

A spatial morphism identifies: that a spatial signa'tl:lre can be derived ftom
the spatial relationships of two involved graphs. In the following, we will
simply say that the two graphs share a spatial signa'tl:lre.

To apply a grammar rule to a given graph (called a host graph), we need to
find a sub-graph in the host graph that matches: the right graph (or left
graph) of the rule. The matched sub-graph is called a redex.

DefInition 3.10: A sub-graph X of a graph H Is called a redex of a marked
graph G, denoted as XeRadex(H, G), Iff

1. f = <1': NO _ N", F: ea - ex" Is a graph morphism between G
and X;

2. I' also serves as a spatial morphism between G and x:
3. V eeEH

, (3neNG, veV' (mH(sH(e» tlrI r(n) 1\ sH{e) = v A mG{v)" n 1\

markG{v)i) =;> 3 ce~, deV" (nf(f(e» - r(c) A fee) = d A mG(d) ­
c); or

V eeeH, (3neNG, veV" (m1f(eJ) ... r(n) 1\ tHee) = v A mG(v) ,. n A

markG(v)i) =;> 3 ceNG, deV (m (sH(e»'" r(c) 1\ sH(e) = d 1\ mGl(d)
-c); and

4. V n1. f12ENG
, r(n1) = r(n21 =;> n1=n2.
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This definition specifies that a sub-graph X of a graph H can be a redex of
a marked graph G ifand only ifX is isomorphic to G in structure, and they
share a spatial signature.

The 800 is equipped with a parser that verifies the membership of a visual
sentence. By taking the spatial information, the parsing algorithm performs
in polynomial time with an nnproved parsing complexity over its non­
spatial predecessor, i.e. the Reserved Graph Grammar.

3.5 Graph Parsing

Having deftned the context-sensitive spatial graph grammar formalism,
this section presents a parsing algorithm that uses spatial specifications to
reduce searching space, and analyzes the time complexity.

3.5.1 A Parsing Algorithm

The parsing process is a sequence of R-applications, which is modeled as
recognize-select-execute (Bardohl et al. 1999). Parsing a spatial graph
grammar proceeds as follows:

1. Search for a redex of the right graph in the host graph without con­
sidering spatial information;

2. Derive spatial relationships between objects in the redex according
to the physical drawing of the host graph. Compare the spatial rela­
tionships with the spatial signature of the right graph (RHS) of each
production;

3. If the redex holds the same spatial signature as the RHS, embed It

copy of the left graph into the host graph by replacing the redex.
Otherwise, go to Step I to search for a new redex.

One or more occurrences ofa right graph may exist in the host graph, and
the selection will affect the parsing result. Even for the most restricted
olasses of graph grammars, the membership problem is NP-hard (Rozen­
berg 1986). Consequently, a parser may not recognize a syntactically cor­
rect graph or be inefficient in analyzing a large and complex graph. To al­
low efficient parsing without backtracking, we are only interested in
confluent graph grammars. Informally, the confluence requires that differ­
ent orders of applications of productions achieve the same result. Fig. 3.5
illustrates a parsing algorithm for confluent grammars, which only tries
one parsing path. In other words, if one parsing path fails, other parsing
paths will also fail.
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Parsing (HostGmph host)
~

1\ while (host I=NULL)
{

matched =false;
for all peProduetions
{

Redex =FindRedexForR(host, p);
If (Redexl=NULL)
{

R.-application(h08t, p, Redex);
Matched = true;

}
}
if (matched == false)
{

print ("Invalid");
exit(O):

}

3.5.2 Object Sequencing

Searching for It redex in the host graph becomes the key to the parsing
process when the parser Meds not cam about the applieation order. With­
out an order imposed on objects in the original Reserved Graph Grammar,
searching for In objects in a host graph G runs in O(malGF) time as shown
in the previous chapter. With the layout infOrmalion found in the host
graph and productions, we should be able to narrow the search space for
the parser. Our idea is to sequence the visual objects in each of the host
graph and right graphs ofgrammar productions into an ordered list so that
efficient string-matching techniques can be used to find the redex in the
host graph.
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Fig. 3.6 proposes the algorithm FindRedexForR to fwd a valid redex in a
host graph according to a given production. It proceeds as follows:

L Encode the objects of the host graph into a sequence, called host s(!-­
quence;

2. Encode the objects in the right graph of the production into a se­
quence, calledpattern sequence;

Redex FindRedexForR(HostGraph G.
Production P)

H=SequenceHostGraph{G);
R=SequenceRightGraph(P.R);
Index=Sequencelndex(R);
redex = match(H, R, Index, p. G);
return redex;

Fig. 3.6. The FtndRedexForR algorithm

3. Search for the pattern sequence in the host sequence as illustrated in
Fig. 3.7.

Redel< match (Sequence H, Sequence R,
Link Index, Production P, HostGraph G)

1=1; redex=NULL;
while OS:!GO
{ for aU kelndex[HPD

{ UpdateSet(k);
if (k==IRI)

redex = VerifyNSObj(P, G);
if (redex 1= NULL)

return redex; }
i++

}
retum redex;

Fig. 3.7. The match algorithm

The fIrSt step of the algorithm FindRedexForR is to sequence the visual
objects of the host graph according to their physical positions.. Object a is
ordered before object b (a's index < b's index) if a has a larger y­
coordinate than b. If two objects have the same y-coordinates, their order
in the host sequence is determined by their x-coordinates, and the object
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with a smaller x-coordinate holds a smaller index. We assume that the ori­
gin locates at the left-bottom comer ofthe screen, and the y axis extends to
the oorth while x axis to the east A unique order is imposed on the visual
objects of the host graph according to their physical positions from top to
bottom, and from left to right when objects share the same y-ooordinare.
As mentioned before. shapes of objects are approximated as rectangles.
and the coordinates ofcentral points are used to represent the physical po­
sitions ofobjects in the sequencing process.

In the right graphs of productions. spatial relationships are specified
through visual notations instead ofphysical drawings. In order to sequence
the right graph. we first generate 11 directed acyclic graph (nAG) based on
the spatial specification in the right graph. and then perform topological
sorting on the DAG to derive a unique pattern sequence. In other words. a
node in the DAG represents a visual object in the right graph. between
which a north-south or west-east relationship is denoted by a directed
edge. A DAG denoting north-soutblwest-east relationship is called V­
DAG/H-DAG. In summary. as the second step of FintlRedexForR. Be­
quenaRightGraph first generates a V-DAG and an H-DAG. and then per­
for:ms topological sorting to obtain the pattern sequence. It proceeds as ful­
lows (the following description only illustrates how to generate a V-DAG.
and the same principle applies to the generation ofan H-DAG):

1. Create nodes for visual objects in the right graph: a node is created
to represent each unique visual object However. no node is intro­
duced fur the object which has 00 spatial relationship with any other
objects in the right graph.

2. Inter-connect nodes: in the right graph. ifan object is defined locat­
ing south-west. south. or south-east to another object. a directed edge
is introduced to connect the two corresponding oodes from north to
south.

3. Perform topological sorting: insert into the pattem sequence a visual
object represented by a V-DAG node that has 00 incoming edge. If
there is more than one node without incoming edges. insert the left­
most object by traversing the H-DAG. After insertion. delete the
node and its associated edges in the V-DAG. Iterate this step until
the V-DAG becomes empty.

In the right graph. a visual object is a non-tlpatial object if it has no spatial
relationship with other objects; otherwise. it is a spatial object. A non­
spatial object will not appear in the pattern sequence. In other words. we
ignore such an object in the process of searching for a pattern sequence in
the host sequence. and process it later in the YertfyNSObj proeednre as
shown in Fig. 3.7.
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Lemma 3.1: There exists a unique order on spatial objects in the right
graph of a production P=(L,R) iff \fo1, 02e/lf, (OJ.,.v02 and 02.,.v(1) =>
(01-+H02 or 02-"'(1), where Ot..vOl and 01..HOI denote no path between OJ and
OJ in the V-OAG and H-OAG respectively, and 01.'vO) and ol-."'Oj indicate a
path between Ot and 0) in the V-OAG and H-OAG respectively.

Proof:

(1) Given that there is a unique order on spatial objects, we assume that
\:;IOi, 0 ..: o/s index <:: o/s index:

Case 1: There is a path from 01 to 0:1 in the V-DAG, ie. 01-v02, which

contradicts with the condition 01"V02.

Case 2: There is no path from 0t to 02 in the V-DAG, Le. 01"-'v02• Accord­

ing to the assumption, it follows that 02,.V0t. The condition of 01 +.v02

and 02...VOl indicates that we cannot determine the order of 01 and 02

in the V-DAG. Based on the third step of SequenceRightGraph and
the assumption, it follows that 01-H02.

Therefore, \:;IOh O2E1'I', (Ot+<"'02 and 02+<vOl)::::) (01-H02 or 02-HOI).

(2) Assume \:;lOb 02, (Ot+<"'02 and 02...VOl)::::) (01-H02 or 02-HOI)' We prove
that there is a unique: order on spatial objects.

• IfOt-V02, v/8 index <:: 0/8 index;

• If02-V0" o/S index <:: v/s index; otherwise,
• Since (Ol+<v02 and 02+<VOt) is satisfied, either (Ot·..}'102) or (02-HOt) is

true. It follows that there is an order between 02 and 01.

Therefore, there exists a unique: order on spatial objects.•

If two objects' order cannot be determined on their available spatial infor­
mation in a right graph, we supplement additional spatial specifioations to
ensure a unique: sequence.

By sequencing host graphs and productions, the problem ofsearching for a
sub-graph in a host graph becomes that of searching for a pattern sequence
in a host sequence. With a pattern sequence containing m objects, (m-I)
sets are required to record sub-sequences of the host sequence. In particu­
lar, each sub-sequence in the It' (k<::m) set satisfies the following two re­
quirements: (1) it matches the first k objects of the pattern sequence; (2) It

morphism can be found between the ftrst k objects ofthe pattern sequence
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and their corresponding objects in the sub-sequence. Initially, an sets are
empty and a new sub-seqnence is obtained by extending it with an appro~

priate object Fu:rther:more, each object ofthe host seqnence maintains a set
of pointers, whieh point to sub-sequences including the object. From the
first object of the host sequence, the match algorithm as shown in Fig. 3.7
proceeds as follows:

1. Assume that the class ofthe cm:rent visual object a (we treat the type
of a node as its class) takes the I" position in the host sequence and
the l(k position in the pattern seqnenee. A new colleetion of sub~
seqnenees is obtained by extending an sub-sequences in the (k~11' set
with object a. We need to exclude a sub-sequence from the collection
if no morphism exists between the first k objects of the pattern ~
quenceB and their corresponding objects in this sub-sequence. Since
an sub-seqnenees in the (k~l)th set have been verified that a morphism
exists, we only need to check: the morphism between the l(k object
and anyi' (j<k) object of the pattern sequence and their correspond~
ing objects in the sub-seqnence of the host sequence. In other words,
if no morphism exists between the k!' object and thel' object of the
pattern sequence and their corresponding objects a and b in a sub­
sequence, we eliminate that sub~nence from the collection. After
verifying an the previous (l~l) objects, the remaining sub-sequences
satisfy the above two reqnirements, and are added to the kilt set.

2. Move up to the next object in the host sequence, and go to Step 1.

3. Whenever a pattern sequence is funnd in the host seqnence. the non~

spatial objects exclnded from the pattern seqnence are searched for in
the remaining objects of the host seqnence. Identify a morphism of
the structural relationships defmed in the right graph among non­
spatial objects and spatial objects with those presented in the host
graph. If the non-spatial objects are found in the host sequence and
their morphism is oonflrmed, a redex is fonnd and a graph transfor~

mation is performed.

By ordering visual objects according to their spatial relationships, we can
reduce the searching space, and thus perform an efficient matching. As il­
lustrated in Fig. 3.6. the function SequenceHostGraph generates a host~
quence. and &quenceRightGraph obtains a pattern sequence. As an exam­
ple. Fig. 3.8(a) presents a host graph and Fig. 3.8(b) illustrates a
production. where subscripts are used to distinguish visual objects of the
same class. The corresponding host seqnence and pattern sequence are
demonstrated in Fig. 3.8(c) and (d) respectively. Moreover. the function
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Sequencelndex (see Fig. 3.6) is used to calculate the positions ofthe visual
classes in the pattern sequence. Since a visual class may take more than
one position. we use set to represent indices ofclasses. In the above exam­
ple~ the Jfclass holds the f'irst position, and thus Index(Jj)={I}; the State­
ment class occurs twice with Index(Statement)={3,2}; and finally In­
dex(Endij)={4}, as shown in Fig. 3.8(e).

Fig. 3.8. Sequoocing host graph and production

3.5.3 Asequencing Example

Fig. 3.9 traces the execution ofmatch for the example in Fig. 3.8. Each ob­
ject in the host sequence needs to be inspected once before the redex has
been found or until all the objects have been inspected.

Initially. all sets are empty. Since the first object of the host sequence can
be mapped to the first object of the pattern sequence~ a sub-sequence con­
taining only one object is obtained at the 1st iteration. Sjmilarly~ a sub­
sequence containing the second object of the host sequence~ which is
mapped to the first object ofthe pattern sequence~ is generated and inserted
into Set I at the 2nd iteration.
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4th iteration

m

"Set 1= {[I

Set 2=

Set 3= U2

rt iteration

Set 1= {J]. In
Set2=H
Set 3= {}

5'h iteration

~ ~)I [2'~1I1
Set 2=1~1 [23

Set 3= {

III i1emt:ion

~
Set 1= {[IH

Set 2= n
Set3={}

Fig. 3.9. An execution trace ofF~orRon the example ofFig. 3.8

At the 3ed iteration, su.b-8equences in Set 1 are extended by appending the
3ed object of the host sequence. A morphism exists between the first two
objects of the pattern sequence and the 2nd and 3ed objects of the host se­
quence, and thus the sub-sequence [23] is inserted into Set 2. On the other
hand, though the sub-sequence [13] matches the first two objects of the
pattern sequence, the structural verification has failed: the production re­
quires a structural relationship between the two objects, which does not ex­
ist in the host graph.

At the 4th iteration, the 4& object can be mapped to either the 3ed or 2nd 0b­
ject of the pattern sequence. A new sub-sequence [234] is obtained by ap­
pending the 4th object to the sub-sequence in Set 2, and it is added to Set 3
since a morphism can be confirmed. Another two sub-sequences [14] and
[24] are generated by appending the 4& object to sub-sequences in Set 1.
Since no morphism is found between the first two objeets of the pattern
sequence and the and 4& objects of the host sequence, the sub-sequence
[14] is excluded. The 4th object of the host sequence can be mapped to ei­
ther 3ed or 2nd object of the pattern sequence. Therefore, a dotted edge is
used to point to the sub-sequence, in which this object takes the 3ed posi­
tion, and a solid edge to the other sub-sequence.

Similarly, the sub-sequence [IS] is added to Set 2 after processing the Sth

object of the host sequence. At the sixth iteration. a pattern sequence,
which meets both structural and spatial configurations as shown in Fig.
3.8(f), is found in the host sequence. Since there are only spatial objects in
the above example, FindRedexFQrR term.inates and a redex is found.
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3.6 Complexity Analysis

We now proceed to analyze the parsing complexity of the presented spatial
graph grammar formalism. In the host sequence of a host grapb, a sub­
sequence matching the pattern sequence of a production is called a qllQ$j­

redex. If the non-pattern objects in the production ftnd their matches in the
host graph, the non-pattern objects in the host graph together with the
quasi-redex construct a redex.

Theorem 3.1: The time complexity of searching for a radax In SGGs is

O«m+n)2. 1G I"' .IGI~, where m and n are the maximal numbers of pattem
nt!

and non-pattem objects in the right graphs of all the productions In the
grammar.

Proof: With m pattern objects and n non-pattern objeots of a produotion,

there are O( I G 1
m

) sequenoes for a quasi-redex and O(IGIPl
) sequenoes for

m!
non-pattern objects. Eacb quasi-redex requires O(m2+n2+mn) time to iden­
tifY a morphism. Therefore, the time of searching for a redex takes

O«m2+n2+mn).1 G I'" .IGI' (~O«m+ni.1G 1
m

.IGI~).•
ml m!

In particular, we discuss three special cases:

L m=O: No spatial information is specified in the productions, and the
SGG degenerates to the RGG. The time complexity is O(n2.IGf),
equal to that ofthe RGG.

2. n=O: No non-pattern object is specified in the productions, and the

time complexity is O(m2. G

tnl

3. m;<f(J, n;<f(J: The productions inolude both pattern and non-pattern ob­

Jects. and the time complexity is O«m+ni. I G 1
m .IGI'}

1171

(:::O«m+n)2·IGI(m+n}».

Therefore, searching for a redex in the SGG is always more efficient than
that in the RGG.

Theorem 3.2: Given a host graph G with a grammar, the time coml?lexlty
of the proposed algorithm searching for a redex. Is O(m2IGI2+k(m+n)2IGI"),
m and n are the maximal number of pattern and non-pattem objects in the
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right graphs of all the productions in the grammar, and (1<-1) is the number
of quasl-redexes prooessed befora the first redo is found.

Proof: The function SequenceRightGraph converts the right graph of a
prod:ootion into a DAG, and finds the longest path ofthe DAG to represent
the pattern sequence. Since there are O«m+nY) relationships (i.e. edges),
SequenceRightGmph runs in 0«m+n)2) time.

The function SeqwmceHostGraph generates a unique sequence from a host
graph, and takes 0(/0118101) to sort the y-ooordinates and x-coordinates.

The function match searebes for a redex in the host graph. It proceeds as
follows: I) look for a quasi-redex in the host sequence; 2) then identitY
non-pattern objects in the host graph. The fA object in the host sequence is
paired with each.t object lj<l)' We check whether there exists a mor­
phism between each of such pairs and its corresponding pair in the right
graph. Since an object can be matched to m positions at most in the pattern
sequence, the time complexity ofverification is O(mi) )( O(m), i.e O(,,(i).
Since there are IGI objects, the time complexity of searching for a quasi-

redex is 0(~1ll2t) = 0(~!GI1. Once a quasi-redex is found, we need to
1=1

identitY non-pattern objects in the host graph, which takes 0«n+m)2) (the
time of verifying whether there exists a morphism between visual objects
in the right graph ofa prodnction and their occurrences in the host graph)
by O(IGlj (the number of sequences of non-pattern objects), i.e.
0«m+n)210111

). Since there are totally (k-I) qnasi-redexes before the first
redex is found, the time complexity of the second step is O~m+nYjGn
Therefore, the time complexity ofmatch is O(m~GI2+k(m+n) IGID

).

Consequently, the time complexity of FindR£dexForR is
0(m2IGI2+k(m+n)2IGjll).•

Theorem 3.3: The time comIMexity of the parsing algorithm fOr a graph G
Is O(m2IGls+k(m+nrIGIn+'). m and n are the fIl8Xlmal number of pattern
and non-pattern objecl& In the right graphs of all the productions. and (1<-1)
Is the number of quasl-redaxes processed befOre the first redsx is found.

Proof: We have proven that the total time complexity ofFindR£dexForR
is 0(m21012+k(m+n)210n Since 0 ----. "'A mnst finish within G.T(p)
steps, where G.T(p) =(2CYIGI (full proof for this step can be found in the
prooffor the ROO's parsing complexity in Chapter 2l. the time complexity
of the parsing algorithm is (2CfIGI .. O(m 10r+k(m+nrIGID

) =
0(m2IGI'+k(m+nrIGIn+').•
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Therefore, due to the additional spatial information available to the parser.
parsing spatial graph grammars is generally faster than parsing non~spatial

reserved graph grammars.

3.7 Summary

Physical layout and abstract structure are two aspects of a graph. This
chapter has presented a spatial graph grammar fonnalism, which intro­
duces spatial relationship into the abstract syntax as language constructs.
.m order to automatically verify structural properties of graphs defined
through a graph grammar. a parser is indispensable.

This chapter has described in details a deterministic parsing algorithm for
the SOO. The parser runs in polynomial time with confluent grammars.
Briefly, the parser sequences objects in the right graph of a grammatical
role according to some spatial criterion (e.g. the direction). Then, the same
criterion is applied to sequencing objects in a given graph to be parsed.
Consequently, sub-graph matching can be performed by searching for the
common sub-strlng of two generated sequences, which satisfies the con­
nectivity requirements. Taking advantage of the spatial information, the
SOO parser improves the complexity over its non-spatial predecessor, I.e.
the ROO. To avoid backtracking, the parsing algorithm requires that
grammatical rules need to be locally confluent.

3.8 Related Work

Rekers and Sehilrr (1996) classify the spatial relations graph (SRO) and
abstract syntax graph (ASR). The former is geared towards visualization,
and the latter towards interpretation. A grammatical approach is proposed
to build the interdependencies between SROs and ASRs.

Brandenburg (1995) presents a layout graph granunar consisting of an Wl­

derlying context-free graph grammar and of layout specifications. Spatial
relationships are derived according to the drawing ofproductions. A desir­
able layout is achieved by satisfying those constraints. One serious draw­
back of the approach is that grids and planar graphs cannot be captured by
context-free graph grammars (Brandenburg 1995).

Those formalisms explore spatial relationships merely from the layout per­
spective. On the other hand, in the SOG, spatial relationships directly con-
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tribute to the interpretation ofa graph, and are considered as language con­
structs like nodes and edges. Furthermore, with the extended expressive
power, the soo is also capable of generating a syntl:lX-directed layout
through a sequence ofgraph tnmsformations, in which the spatial inform.a­
lion of the post-condition specifies a. desirable layout among involved ob­
jects.

Pict:u:re description fol1ll8lisms. e.g. the constrairrt rmlltiset grammar
(CMG) (Marriott 1994), provide a high level ftamework for the definition
ofvisual programming languages. An :incremental bottom-up parsing alg0­
rithm is proposed to veritY the membership for cycle.-ftee CMOs. The al­
gorithm encodes a CMG as a logic program by adding an extra attribute to
each token which represents the multiset ofterminal tokens.

Many proposed graph grammars, such as the NLG graph grammar (Engel­
met and Rozenberg 1991), fall in the category of node replacement graph
grammars, where a node of a given graph is replaced by a new sub-graph
connecting to the remainder of the graph by new edges. Brandenburg
(1988) investigates the complexity of node rewriting graph grammars, and
concludes the character distinguishing polynomial time graph grammars.
Those parsing algorithms are based on context-ftee graph grammars.

Being a context-sensitive graph grammar, the Layered Graph Grammar
(LGG) is equipped with an exponential parsing algorithm (Rekers and
Sch:iirr 1991). Instead of exhaustive search, the parser uses a breath-first
search algorithm such that possible sub-derivation are constmcted and ex­
tended in parallel instead of re.-computing them multiple times. Filters are
used to discard useless sub-derivation as soon as possible.

Bxtending the WG, Bottoni et al. (2000) proposes the ContextualLayered
Graph Grammar (CLGG), which provides new constructs, such as nega­
tive application conditions and complex predicates. The parsing algorithm
of the CWG is improved over that of the LGG through the application of
critical pair analysis (plump 1993). More specifically, non-conflicting
rules are first applied to reduce the graph as much as po881ole. Afterwards,
rule application oonflicts are handled by creating decision points for the
backtracking (Bottoni et al. 2000).
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4.1 Introduction

With the rapid advanoo of the Internet and Web technology, an increasing
amount of graphs and media contents are delivered on the Web. Qn·line
multimedia presentations, such as news, need to be constantly updated.
The content and the presentation strncture of an on-line multimedia
presentation may also be frequently updated. At the client side. there are
various kinds of viewing conditions. such as varying screen size, style
preference, and different device capabilities. For example. consider a
diagram representing an organizational strncture on the Web that may be
of considerable complexity occupying a large screen space, and thus may
be unsuitable for small displays (Marriott et al. 2002). Thus. if the diagram
is to be viewed on the screen of a mobile device, such as a PDA (personal
Digital Assistant). the original diagram layout may not be appropriate.
Another example is a news Web site, which generally needs to be
coustantly updated with the incoming news items. Such a site may have to
adapt itself frequently to the changing space and style requirements for
di:lferent news categories. The ability of dynamically adapting its layout
would be highly desirable. There are also increasing demands for
accessing on·line multimedia documents from mobile devices such as

:w?tffthe current document markup languages such as HTML and WML,
the layout of a Web page is relatively static and fixed (Borning et aI.
2000). When the user's requirement or the device capability is changed,
the layout may become unsatisfied. The reason is that such markup laD·
guages do not provide any mechanism powerful enough for specifications
to be adaptable to the changing context. Though SMJL (W3C 2001) and
CSS (W3C 20Mb) provide more flexible markups for multiple alternative
layouts. the markups provide absolute layout functionality. rather than
adaptive to the user's intention or the existing layout. Therefore, a
meta-level design mecht:u1ism capable of adapting multimedia presenta­
tions in response to the dynamic changes in information content is highly
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desirable. We need a sound but practical fonnalism that supports autolnatic
adaptation to the change of media contents, display enviromnents, and the
user's intention.

To illustrate the concept ofmultilnedia adaptation that we perceive, we use
lshizaki's schematic diagrmn ofa process between content creation and in­
formation reception (Isbizaki 2003) as depicted in Fig. 4. L The design sys­
tem should be able to adapt itself to the changes in information content and
in individual users' intentions. As mobile devices provide an increasing
proportion ofon-line content accesses, we argue that a multimedia author­
ing system should support an additional type of context changes - i.e. ad­
aptation to the change of device capabilities. In other words, the designer
of a multimedia system. needs to be able to specify how the presentation
would evolve based on the change of enviromnents (e.g. from a desktop
screen to a mobile display panel), user's intention (e.g. zooming in or out),
and infunnation content (e.g. news update).

USet'1>

- ......<><><>
~~ =·<><>0-,; ---...=....0<><>

Fig. 4.1. Multimedia presentation design and delivery process

This chapter presents a visual language approach, specifically a spatial
graph grammar, for adaptive multimedia authoring and presentation. It fo­
cuses on the issues and techniques for size adaptation and style adaptation
in response to the change of device requirements and user's interactions.
The approach is highly intuitive yet also sound in theory.. The central
theme of this chapter is to demonstrate how to use a graph grammar for­
malism to visually specify and support automatic transformation and adap­
tation of multimedia presentations. The approach has two major advan­
tages due to its meta-tool capability: a graphical authoring tool can be
automatically generated by a visual language generator, such as VisPro to
be described in Chapter 8; and the generated authoring tool can be used by
novices who have no computing knowledge.

The chapter is organized as the fonowing. Section 4.2 introduces the spa­
tial grammatical representation and specification and focuses on adaptation
techniques to support size and style changes of multimedia presentations.
Sections 4.3 and 4.4 demonstrate size and style adaptations by going
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through two real-world examples. Section 4.5 presents a system architec­
ture implementing the grammatical approach. section 4.6 summarizes the
chapter. Finally, relevant:materials for :further reading are reviewed in Sec­
tion4.7.

4.2 Adaptation to Context Changes

As discussed at the beginning of the chapter, context clumges may be due
to the change of information contents such as a traffic monitoring system.
device capabilities such as from a desktop screen to a PDA panel, or the
viewer's intention. A graph grammar based approach is able to adjust the
appearauce to different displaying environments.

This section outlines automatic adaptation of the size and style of a multi­
media presentation in response to any of these changes, though other as­
pects ofadaptation may also be supported by the graph-grammar approach.
Detailed example adaptive presentations will be discussed in Sections 4.3
and 4.4.

4.2.1 The Marking Scheme

As described in Chapters 2 and 3, the marking mechanism plays a central
role in the specification and parsing of reserved and spatial graph gram­
mars. To apply the marking techoique to multimedia adaptation, we will
demonstrate the power of spatial graph grammars. Consider a simple ex­
ample in graphical presentation: a verticallayom provides a different vis­
ual perception and requires a different screen (usually smaller) estate from
a horizontal layout, as shown in Fig. 4.2. This is one of the most common
issues in. graphical design and can be effectively applied to transforming
Web graphics to suit small screen mobile devices. Fig. 4.3 depicts the re­
writing rule (production) for this required transformation.

Since there may be multiple nodes chained in the same direction, we mark
the vertices on the both ends ofthe two nodes by attaching unique integers
to the vertex labels (Le. "N:I" and "S:2j. This means that during trans­
formation, the edges connected to both ends will be reserved. The direc­
tion change from horizontal to vertical is reflected in the positions of the
vertices, as explained in Section 4.2.3. The edges between the nodes will
be shortened after transformation, as specified by "·S" and "·N".
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Fig.4.2. Horimntallayout (a) transfonned to vet'ticallayout(b)
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Fig. 4.3. A production for the transformation in Pig. 4.2

4.2.2 Size Adaptation

The most typical application ofsize adaptation is for Web display layout to
be reduced to suit mobile devices. The simplest solution to the problem of
the limited screen size is linear scaling (or norma! zooming), but this is of­
ten not the best way. A more elaborate technique is differential scaling, in
which different components ofa document are scaled differently. Differen­
tial scaling is effective in compressing white spaces. For example, rather
than performing a linear sca1ing, each white space is compressed, while the
box sizes are maintained (Marriott et al. 2002), as illustrated in the simple
example in Fig. 4..4. To specify such a transformation, we can use distance
relationships as shown in Fig. 4.5.

To represent the change of a node size, we use "+" in the node's center
box to indicate that the node will become larger (or zoomed in as discussed
below) in the transformation, "." for smaller (zoomed out), and blank for
unchanged size.
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(1))

Fig. 4.5. Grammar specification ofdifferential staling in Fig. 4.4

4.2.3 Style Adaptation

To suit different display spaces and devices, the layout ofindividual media
objects and that of the entire dooument may need to be adapted. One of
such adaptation techniques is known as alternative layaut. Fig. 4.6 illus­
trates a typical example of alternative layout. Originally object B is on the
right of object A. After transfur:mation, as in Fig. 4.6{b) and Fig. 4.7(b),
object B is at the bottom ofobject A. thus the locations ofvertices E and W
have also changed

Another type of multimedia style adaptation is caned semtmtic zooming
(Marriott et al. 2002). For varying interest in detail, an adapted layout may
initially show one level of details. It allows the viewer to zoom in hierar­
chicany, while adapting the layout level of each individnal component or
group ofcomponents to the available screen size or to the viewer's prefer­
ence. For example, we may need to enlarge one part, in which the user is
particularly interested, while compressing unrelated parts, as illustrated in
Fig. 4.6. We need to look into the detail ofobject A first, so we may view
the details ofA and B separately. Fig. 4.6 illustrates the combined effects
of alternative layout and semantic zooming. Fig. 4.7 depicts the snapshots
ofusing gramma.tica1 rules to achieve the style transformation from (a) to
(b), including the reduced size ofB. and shortened distance between A and
B in (c).
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In some systems (Mucbaluat et al. 1998), the above viewing technique is
called.fisJu,!e view. More commonly accepted concept of fisheye views re-.
fem to the geometric distortion. technique wben. bigblightin.g a focused area
of a large display (Sakar an.d Brown 1994). Geometric distortion enlarges
the focused area while proportionally reducing other areas depen.ding on
their distances to the focused area. Hyperbolic trees (Herman et aI. 2000)
offer another similar viewing technique, widely used for Web browsing.

(a) (b)

Fig. 4.6. Semantic zooming with an alternative layout

ta)

I I
_.d.. .. _L. __

lA l....-,...- ....
I E I

(b) tel

Fig. 4.7. Application ofsetn81ltic zooming and distance rules to achieve the effeet
in Fig. 4.6

4.3 Example 1: Adapting Sizes for PDA Displays

This section an.d the next section focus on two detailed examples of size
and style adaptations through grammatical specifications and graph tran.s­
formations. This section describes how to transform a desktop Web page
to several small pieces fur mobile Web browsers - an example of size ad­
aptation.
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4.3.1. Original Web and Resulting PDA Presentations

Fig. 4.8 shows the popular NASA home page, whose size and layout may
be adapted to suit small screen Web browsers. We will tnmsform this page
into the WML :for.tnm to be displayed on PDAs. The XML description for
the above Web page is as the following:

<1Kml veraion="l.O" encodin9~"rSO-aS59-l"1>
<pa.~>

<sEIctionl>
<bloclitl>

<Logo>
<pic>

<id> nasa <lid>
<source> .Iimagea/nasa.bmp </source>

</pic>
</1,01)'0>
<text>

02.01.03 Building Planets in Cyberspace
</taKt>

</blockl>
<block2>

<theme>
<pic>

<id> shuttle <lid>
<source> ./images/shuttle.bmp </source>

</pic>
<Itheme>
<button>

<link>
<pic>

<id> missions <lid>
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<source> .Iimagell/missions.gif <Isource>

http://www.nasa.gov/missions/current/
</href>

</Hnt>

</hutton>
</hloct2>

</sectionl>
<section2>

<pic>
<id> improve life <lid>
<source> .Iimages/improvelife.bmp </source>

</pic>

</section2>
<Ipage>

Assume the desirable outcome as illustrated in Fig. 4.9. We divide the
original Web page into four small pages based on the four ilnages~ and
copy the top-Ieft heading information and top~right hyperlinks to all the
small pages. As a result, each slnall page contains three parts: the top part
contains date and title (tagged ·'Text") and NASA logo ("Logo")~ the tnid~

dIe part is an image ("Theme" or "Picture") and the bottom part contains
three hyperlinb eLink").

Fig. 4.9. Resultmg presentation as four pages on a fDA

The output tree structure is translated into a WML document. Each page or
a single interaotion between a user agent and a user is known. as a card.
One advantage of this arrangement is that multiple screens can be
downloaded to a client in a single retrieval and vice versa. Our task is sim~

ply to transform the XML description into several cards, each to be dis­
played as a PDA page. The following is part of the WML document for the
PDA presentation in Fig. 4.9, where "card" represents a separate page:
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<wml>
<card id="sactionl" Title="naea">

<p>
src=". alt="earth"l>

02 .03 Building Planets Cyberspace
</p>
<p>

<img src="./images/shuttle.bmp" alt="shuttle"l>
</p>
<p>

alt="shuttle"l>
alt="shuttle" I>

</p>
<Icard>
<card id="improve" Title="improve life">

<p>
l~m~9Els/1JaS,a.jp9ft alt="earth"l>

Cyberspace
</p>
<p>

<img src="./images/improvelife.bmp" alt="improve life"l>
</p>
<p>

~~tge's/m,~s~!101~s.b~l" alt="shuttle"l>
src=" alt="shuttle"l>
src="./imagee/events.l:lmp" alt="shuttle"l>

</wml>

4.3.2 Structural Transformation

Bach Web page is a multimedia document that has a layout constructed by
many media objects. We start by analyzing the logical strI.reture (automati.
cally generated as a tree) and desired layout and adaptive properties of the
given Web page. In the Spatial Grapb Grammar, eacb object is presented
by a node. A Web page in XML is a tree structure whose elements can be
grouped hierarchically, as shown in Fig. 4.10 for the given example. To
convert the tree to a more structured arrangement suitable for transforma.­
tion, we need to introduce the concepts of logical nodes and grouping. The
tree contains several logical nodes (LNs) sueh as Page, SectionJ, Secti0n2~

etc. As the root, Page contains two Section nodes. Section1 contains two
Block nodes. BlockJ contains Logo and Text, and Block2 contains Theme
and LNBut/on. LNButton includes a number ofLink nodes. Sectionl has a
number ofchild nodes, called Pictures. Such hierarchical relationships can
be automatically derived from the XML document and used to generate the
data struetnre in Fig. 4.11.
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Fig. 4.11. Tree structure of tile Web page

Non-terminal

Fig. 4.11. A hierarchical data structure

o
o.. Termina

Abstract

We use an abstract node to bead a group that bas many objects of a single
type. Sucb a group header bas a generic set of attributes applicable to the
wbole group. Each group member inherits from its parents' attributes such
as vertices with spatial information. This arrangement improves the pres­
entation efficiency. Using the concepts of groups and LNs, we only need to
consider spatial relations of a node with its parent, child and sibling nodes
(i.e. direct relatives). For example, we will consider the relationship be­
tween the siblings LN Blockl and LN Block2, but not the relationships be­
tween the children of N(BlookJ) (i.e. Logo, Text) and those of N(Block2)
(i.e. Theme, N(Button)}. Combining the spatial information from Fig. 4.8
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and above logical and hierarchical information from Fig. 4.ll t the host
graph in Fig. 4.12(&) can be automatically generated to be processed by the
spatial graph grammar. The application of the SGG generates the new lay­
out structure in Fig. 4.12(b) for PDA presentations, as explained in the
next subsection.

(a)

-~-----~------~----,I 10 t I
I I
I I
I Card2 I
I I
I I
I I
I U U I
I I

~-~---------------_.
(b)

Fig. 4.12. (a) Host graph ofthe original structure (b) The resulting layout struc­
ture

4.3.3 Grammatical Specification

In order to perform the desired transformation. we define a set of pr0duc­
tions as illustrated in Fig. 4.13. There are two right graphs for some pr0­
ductions. The right graph not enclosed in a dashed box participates in syn­
tactical parsing, and, together with the left graph, will be called a syntax
production or simply S in the fonowing description. The right graph en­
closed in a dashed box is used fur the layout transformation, and, together
with the left graph, will be called a layout production or simply L. A set of
L productions geneI'l:1tes a new layout either from an existing layout or
from logical relationships between media objects.
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Syntax Produt:fJons

Syntax production <1> (or simply S<I» expresses the initial state. If a
parsing eventually reaehes the state "- (initial state), it is regarded as sU(i~

cessful (Zhang et al. 2001a).

S<2> illustrates that sueh a page (NASA Homepage) oonsists ofCard and
PHead, and Card is on the top ofPHead. S<3> abstracts a Card from Sec­
tionl.

S<4> specifies that Section! contains two blocks, and BloeM is side by
side with Blockl. The vertex: in gray color in a node means that it is
marked and will be reserved during parsing.. FOI example, the vertex la~

beledP is marked, and will stay unchanged after parsing.

S<5> specifies that BloeM consists of Text and Logo, and Text is directly
on the top ofLogo. The vertices labeled P and D are marked.

S<6> indicates that B/oela includes Theme and LHead. LHead is a Group
Header in the Link structure, and used to inherit the attributes from its par~

ents. If the Link sttueture contains many members, using LHead will sig~

nificantly improve the efficiency of the graphical presentation. To repr~

sent the containing relationship between Theme and LHead, we use dotted
boundary in LHead, and connect the two nodes' central grids.

S<7> specifies that the Link structure oonsists of several terminal nodes of
Link, stacked on top ofeach other.

S<8> and S<9> indicate that Section2 includes several Pictures. In 8<8>,
PHead and Cord can be redueed to PHead. Card is an intermediate node
and can be abstracted from Picture (Pic for short) by using S<9>. We can
apply S<9> continuously until no terminal node exists.

The R-application in the SGG is a parsing process, which in general con~

Bists of: selecting a production from the grammar and applying an R­
application of the produetion to the host graph, and the process continues
until no productions can be applied. If the host graph is transformed into
an initial graph "-, the parsing process is successful and the host graph b~
longs to the langnage defined by the graph grammar.. We fll"st use S<9>
and S<8> to reduce the Picture strueture to PHead. S<7> is used to reduce
the Link structure to LHead. S<6> is then used to reduce LHead and
Theme to Bloek2, and S<5> to reduce Logo and Text to Block!. Then we
use S<4> to obtain SectionI. Finally, S<2> reduces Card and PHead to
Page and S<I> to "" and thns the parsing process is suecessful.
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<:1:>

Fig. 4.13. Productions fur the transfonnation from the presentation in Fig. 4.8 to
the one in Fig. 4.9
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Layout Productions

Based on the above syntax productions for parsing the host graph, we add
several extended productions enclosed in dotted boxes called layout pro­
ductions for transformin,g the presentation in Fig. 4.8 to the one in Fig. 4.9.
The layout productions are thus an additive set to the syntax produetions.
Combining these two sets of productions, we can generate the desirable
layout

Layout production <4> (or simply L<4» transforms Blockl and Bl0ck2
from the horizontal relationship to vertical relationship with BlocH on top
ofBlock2.

L<5> transforms Text and Logo from a vertically touching relationship to a
horizontally touching relationship.

L<6> specifies how to transfunn two objects from a containing relation­
ship to a vertical relationship. Before the transfonnation, Theme contains
LHead. After the transformation, Theme is on the top ofLHead.

L<1> transforms a sequence of Links from vertically touching relation­
ships to horizontally touching relationships that is repeatedly applied.

.In L<9>, when Picture with left and right vertices fmds a match, it is con­
verted to a BlocH-Plcture-LHead structure, whose three nodes are verti­
cally aligned along the left edges.

We frrst parse the host graph in Fig. 4.12(a) to A. During parsing, a stack is
used to record the sequence of the productions being used. Then from A,
the original parsing tree is retrieved. At each step, the corresponding layout
productions are popped from the stack to perfonn layout transfonnations.
For example, when Card with its southern vertex is matched, 8<3> is used
to generate Section}. Then, we use L<4> to obtain a new layout in which
Block] and Block2 hold a vertical relationship. For Blockl, L<5> is used to
derive a horizontal relationship between Logo and Text. Using L<6>,
Theme is moved to the top ofLPHead. L<1> is used to obtain the horizon­
tal Link structure. Now we obtain the fJrSt PDA page, represented as CardJ
in Fig. 4.12(b). L<9> is used to expand Card to the Blockl-Picture-LHead
structure. Logo and Text are then generated using L<5> and the Link struc­
ture generated using L<7>. We therefore obtain the second PDA page
(marked Card1 in Fig. 4.12(b». The third and fourth pages, also of the
Cord2 structure, are generated in the same fashion. The layout in Fig.
4.12(b) can be automatically transformed to the final layout illustrated in
Fig. 4.9.
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4.4 Example 2: Adapting Presentation Styles

This 8OOtion provides a fu:rther example, 00 the adaptatioo of presentatioo
styles.

4.4.1 A Presentation Style

As an example for style adaptation, consider an art musenm that: organizes
its mnltimedia. documents in It pnHietermined logical structure, as shown
in Fig, 4,14, At ooe exhibitioo seasoo. the museum wonld like to display
the documents 00 the Web as displayed in Fig. 4,15 with the following
presentatioo organizatioo, The page oonsists of a. menu bar of various hy~

perlinks on the left side for the whole museum, hyperlinks to all the cura.­
torial departments 00 the top, and the oollectioo higblights occupying the
main page area.. The highlights of each museum department eoosist of a.
number of well-known art works (i.e. pictures), Assuming the pictures
need to be displayed with 3 in each row, six pictures of the selected "Paint~

ing and Sculpture Highlights" are displayed in 2 rows by 3 columns in the
main area.

4.4.2 Grammatical Specification

The logical structure ofFig. 4.14 is regarded as a host graph, which is used
to dictate the presentation layout acoord:ing to it grammar speeificatioo,
The complete set of graph grammar production rules that: meet the ~
quirements of the presentatioo style of Fig, 4.15 is listed in Fig. 4.16. The
document mainly consists of two composite objects, Secti0118 and Content,
which participate in Productioo <2> in Fig. 4.16.

The Secoo118 object consists of a number of hyperlinks, which enable the
user to navigate other museum documents from the same page, The hyper~

links are organized hierarchically. A link at level i may include several
links at level (1+1). The links at the same level are aligned to the left;. and
level (1+1) links are indented from its level i links, Production <3> ab­
stracts a terminal node called Link to a n~terminal node Section, Prodnc~
tion <4> dictates how to redncc two links (represented by two Section '3)
while establishing their spatial relations - vertically aligned and touched
with each other, Production is for redncing the last Section node,
which is cbameterized by an unmarked N vertex in Section. Prodnctioo
<6> demonstrates how to attach hyperlinks (upgraded from Link to
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Section) at level (i+1) to a hyperlink at level i with right indentation (real­
bred by a partially touched relationship as shown in the right graph of the
production).

Fig. 4.14. Host graph ofthe Museum multimedia document

Fig. 4.15. A museum multimedia presentation
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The right part of Context consists of three objects, Title. Dept8 and Pies as
specified in Production <:7>. The Title object presents the title of the
d.ooument, and is placed above the two other composite objects. The Depm
object, representing a list ofdepa;rtments in the museum. consists ofmultiw
pIe Dept objects to be aligned to the left and vertically touched with each
other. As shown in Production <9>, each Dept object consists of three
primitive objects. Name. Home and Hilight, which are to be touched with
each other and aligned horizontally. Production <8> reduces two Dept obw
jects into one, and Production <10> provides the syntax ofa Depts object

A Pic object represents lit picture displayed in the main area and has an
leon and an lilus objects as specified in Production <I The leon object
is placed above the lllus object, and both are aligned to the center. Reprew
senting the bighlights of a department to be displayed in the main area, a
Pies object is abstracted from a pHead object in Production <12:>, and
consists of multiple Pic objects to be laid out according to Productions
<13> and <14>. By applying Production repeatedly to reduce two
Pic objects into one Pic object, a sequence ofPic objects is generated

Since it is required that three Pic objects are displayed in each row, we
need to use action codes to specuy the constraint An action code associ­
ated with a production is like lit Java exception-handling method, used to
specifY the semantics of the production and to provide additional control
information to the parser. We introduce a global variable, called NwnOj­
Col, to record the current number of the Pic objects in the currently row.
Initially, NumOjr:ol is set to 1 in Production <12:>. Every successful appli­
cation ofProduction <13> increases NwnOfCol by 1 tmtil its value reaches
3. Production <14> is applied only when NumOjr:ol is equal to 3. indicat­
ing that there are already three Pic objects in a row. However. the last row
may contain less than 3 Pic objects. Production <IS> handles such a spe­
cial case. Apart from the action code (Production <IS> has no action
code), the only diiferenee between Production <14> and <IS> is that the N
vertex is marked in <14> and unmarked in <IS>.
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<15>

actiQI'l(AAMGraph II}
(

if (Null'lOfCo! " i}
NQlI'lOfCoI " 1;

else eldli);
}

Fig. 4.16. Graph grammar definition of both the dooumwt structure in Fig. 4.14
and presentation in Fig. 4.15
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4.4.3 Adapting to An Alternative Style

Assume in another exhibition season, the museum home page will be pre­
sented in an alternative layout as illustrated in Fig, 4.17. where the main
area has a different arrangement It would be t:ime-consu:min to manually
adjust the layout ofeach page for a large number ofsimilar pages and also
error-prone, Fortl.1W!ltely. the spatial graph grammar provides an adaptive
approach to document presentation since the system can. select an appro­
priate set of productions and automatieally generate a desirable layout
when the context is changed To support the above alternative presentation
style, what is needed is simply a subset of new productions that will re­
place Productions <11> to <IS>. as listed in Fig, 4,18, By applying the al­
ternative productions. the dowment not only displays two Pic objects each
row. but also interleaves the Icon and IlEus objects, Other presentation
styles oould also be easily adapted by modifYing the relevant part of the
grammar, A typiea1 example is when the width ofthe viewing device is too
narrow to fit three Pic objects, the layout can be adjusted to two Pic ob­
jects or even one in each row,
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Fig. 4.18. Revised subset of productions (replacing Productions 11-14 itt. Fig.
4.16) for generating the alternative presentation style ofFig. 4.17

4.5 System Architecture and Implementation

At the system level, the grammatical approach described above is realized
by four modules as shown in Fig. 4.19: event encoding, event listener, pro­
duction authoring and parser. The event-encoding module lets the user
describe the events, to which the grammar should be sensitive. The event
listener dynamically monitors the system to see if any changes have oc­
curred due to the content update or user interactions. Upon the user's in­
puts and messages retrieved from the event database by the event listener,
the parser performs the corresponding graph transformation according to
the predefIned graph grammar.

The production authoring module provides a tool to define a graph gram­
mar according to the desired document layout and its dynamic behavior.
The grammar dictates how to construct a multimedia document layout
through various types of media objects as described in the previous sec­
tions. A production not only specifies how to construct composite objects,
but also bow the constructs look like and adapt to dynamic changes.
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User Input

Document
Layout

Dc:::::J
DO

Fig. 4.,19. A system architecture

The parser validates the structure ofa host gnlph, and automatieany gener­
ates a parsing tree, which reflects the hiemrchical st.nwture. Also, the lay­
out is adjusted according to the spatial specifications, which are integrated
with the stmctuml specifications. For example, when the user modifies the
fhnt sizes, or device chamcteristics, 8. message is dispatched to the parser,
and a conditional (even-driven) production may be triggered to perform a
gnlph transformation. The positions and styles of objects are adjusted ac­
cording to the spatial specifications in the grammar. During the process of
gnlph transformation, some objects may conectively construct a composite
object, which is treated as one entity whose position change in the later
layout process will not affect the spatial relationships among its internal
objects.

When defining grammar productions for graph layout where edges repre­
sent only geometric relations, we allow only one relation between any pair
of nodes. Such relationships can be efficiently handled by the original
ROO formalisms. The gnlph grammar formalism with spatial specification
mechanisms is sufficiently expressive in specifYing multiple connectivity
and complex presentation structures.

The system implementation is based on a vimal language generation
fmmework The fi'amework is essentially a meta-tool for automatic genera­
tion ofvisual specification tools (Zhang et al. 2oo1a), with which different
multimedia authoring and presentation languages can be automatieany
generated according to varied requirements specified through spatial graph
grammars. For the example in Section 4.3, we can specify original docu­
ment structure through syntax productions as shown in a snapshot of Fig.
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4.20 (ie. production authoring module in Fig. 4.19, events are not used in
this example). The production without spatial specification is slightly dif~

ferent from the full version of Fig. 4.13. The meta-tool then automatically
generates the language environment with a graphical editor and a parser. A
user can then use the graphical editor to draw an application docmnent
structure and provide desired texts and attributes, as illustrated in the sna~
shot in Fig. 4.21. When the compiler is triggered from the menu on top of'
the editor, the resulting OOcmnent structure is visualized (Fig. 4.22) and
WML doomnent listed in Section 5.1 is generated.

Fig. 4.20. Speeii'ying productions luling Rule Generator
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Fig. 4.21. Speci~ original document strl.lcture ush1g the generated graphical
editor

4.6 Summary

'I'he grmn:matical approach is promising in providing a powerful mecha­
nism to represent the layout stttwtu:re graphically and to perform an online
validation and adaptation through an automatically generated parser. This
chapter has presented the concept ofapplying graph grammars to the trans­
formation of multimedia presentations to achieve automatic adaptation to
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the change ofmedia contents. different layout requirements and user inter­
ootions, Such transformations usually involve location change, differential
scaling and semantic zooming. To graphically represent these three types
of changes. we have proposed the notation of grid nodes, and three rules:
location rule, zooming rule and distance rule. We use th.e spatial graph
grmnmar formalism to explicitly describe the syntax of Web application
layouts and transformation. methods,

The graph transformation tool can be considered an authoring language
generator, i.e. a meta-tool. that can generate any authoring tool environ­
ment or re-generate a modified tool whenever needed. A multimedia au­
thor without any knowledge of graph grmnmars or design rules will be
able to use the generated authoring tool to make adaptive presentations by
drawing graphical structures. Syntax check and design validation are then
automatically performed by the authoring tool. A graph layout can be
transformed acoording to the defined grammar or run-time events such as a
user interaction,

As mentioned at the beginning of the chapter, the Synchronized Multime­
dia Integration. Language (SMIL) (Bulterman and Rutledge 2004; W3C
2001) allows control over which media elements, and where and when the
media elements are to appear in a multimedia presentation. Though the
SMlL is flexible to support multiple alternative layouts, there are several
fundamental differences between the SMIL and our graph-grammar-based
approach. Firstly, rather than providing absolute layout positioning as in
the SMIL, a graph grammar defines the desirable layout adaptive to the ex­
isting layout or the user's intention. Secondly, when a media element is de­
leted or inserted satisfYing predefmed structural oonstraints, an updated
representation can be automatically generated in the grammatical approach
through parsing but this is not possible with the SMlL, Thirdly, the posi­
tion of a media element in the SMlL is defmed relative to the size of the
element's parent geometry. The SOO cannot only define a representation
the same way through attributes and action codes, but also specifY the
position ofone element relative to another through graphical notations,

Cascading Style Sheets (CSS) (W3C 2004b) derme how to display Web
documents, including specification of fonts, background, foreground, and
so on. They allow both the anthor and reader to provide rules that specifY
various attributes of a Web document. Multiple style definitions will cas­
cade into one according to some conflict resolving rules. The layout
mechanism of both the CSS and SMIL works on a predefined specifica­
tion. Only through a transformation language, such as XSLT (W3C 1999).
may CSS and SMIL allow the layout mechanism to work conditionally on
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a previous layout or a. spatial property. The graph grammar approach.
however. allows the new layout to be generated based on the previous lay~

out as well as on a. specification.

4.7 Related Work

There have been a number of systems and approaches for the authoring
and presentation of multimedia systems (Prabhakanm 2000). Among
know~based approaches. Comet (Feiner and McKeown 1993) and
WIP (Andre et aI. 1993) employ some forms ofrul~hased :mechanisms to
represent the graphical design knowledge. The rules control the seareh of
all possible solutions and determine an appropriate solution. One of the
most cllal1enging issues in these systems is how to speoify the oonttol
mechan.is:trL

Vazirgiannis et aI. (1999) proposed a. spatio~temporal composition model,
and indexing schemes for efficient querying in such a spati~tempar:al ~

ordinate system (Vazirgiannis et al. 1998). The model translates spatial
and temporal relationships among multimedia. objects into minimal and
uniform expressions. and allows aothors to specify an object's spatial f~
tures either as absolute coordinates or in relation to other objects. Algo~

rithms and tools have been developed to transform relative data intoa~
lute coordinates, and to verify the integrity of spatial aod temporal
relationships. The model does not address its adaptability to the changing
space and layout requiremeuts. Based on the nested context model (NCM)
(Casanova et aI. 1991), HyperProp (Soares et aI. 2000) emphasizes the im~

portance of document logical structuring. It supports event~ba.sed spatial
synchronization and behavior specification, but offers no explicit
specification ofdocument layout and spatial adaptation. Temporal aspects
are also investigated by Guan et aI. (1998) in their model of Distributed
Object Composition Petri Net (OOCPN) that facilitates the
synchronization of multimedia presentation in a distributed computing en*

~c interface, the attributes of elements are defined in terms of
other elements and attributes of the viewing environment: information
l:inkB indicate a. (semantic) connection between two pieces of information,
which can belong to different information domains, an information view is
a collection ofcorrelated objects displayed together to help the user to per­
fonn some activities on the objects (Bjork et aI. 2000). Interactivity allows
the display to be dynamically adapted to the user's requirement Doming
et al. (2000) present a. system architecture in which both the author and the
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viewer can impose page layout constraints. The final appearance ofa Web
page is thus the result of negotiation between the author and the viewer.
Marriott et aI. (2002) extends Scalable Vector Graphics (SYU) with con­
straint-based specification. Such lUI extension supports client-side adapta­
tion of documents to different viewing conditions, These approaches do
not offer visual specifications and their layout solutions rely on constraint
solvers.

.m dynanlic authoring, "authoring" refers to creating the content for any
kind ofpresentation or document (Myers 1998). Dynamic authoring advo­
cates that capture-based systems should support flexible hypertext struc­
tures generated by linking through interactive operations (pimental et al.
2000). Some user interface toolkits uses the approach of recognition and
mediation by constructing a library of reusable error correction,. or media­
tion, that can provide structured support for resolving mnbiguity at the in­
put event level (Mankoffet al. 2000).

The work presented in this chapter was influenced by that of Weitzman
and Wittenburg (1994). Weitzman and Wittenburg (199B) applied a graph
grmnmar formalism - Relation Grmnmar, to the automatic presentation of
multimedia documents. The grmnmar governs the structure of the docu­
ment. One or more parsing trees, each of which represents an independent
presentation, are derived througb a parser. Then, a syntax-directed trans.la­
tion is made on the tree. The final layout is created by a constraint solver
following the translation. In this approach, relational grmnmar functions as
a mapping from a representation of one style of multimedia documents to
the forms that specify bow to realize the media objects. Inspired. by the
work of Weitzman and Wittenburg, Cruz and Lucas (1997) developed a
visual querying and presentation system called DelannayMM, but grammars
are not used in this system (Cruz et aI. 1997).

Another area of research is graph drawing (Di Battista et at 1999). Six et
ai. (2000) proposed post-processing techniques (after some major graph
layout process), called refinement, for effective graph drawing. The tech­
niques can significantly improve the quality oforthogonal drawings by re­
ducing a graph's area, bends, crossings, and total edge length (Di Battista
et aI. 1999). In a graphical layout, maintaining a consistent view by auto­
matically beautifying the display is desirable (Minas and Yiehstaedt 1993).
This chapter discussed a grmnnmtical approach rather than an algorithmic
approach to the graph layout problems addressed by Six. et al (2000).
Zhang et al. (2002) presented an approach to combining the ROO formal­
ism with constraint rules to support automatic layout oforthogonal graphs.



4.1 Related Work 85

Research has been done in the graph grammar support for Web informa­
tion transformations. To support automatic layout of flowcharts. recently
Zhang et ai. (2oo1c) presents a visual approach to XML document design
and transformation. which uses RGOs (Zhang et aI. 2001b) to define the
XML syntax and to specify the transformation between different XML
formats. The details will be covered in the next chapter.
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5.1 Introduction

As more research disciplines and social sectors are becoming computer­
ized, an increasing amount of observational data and documentation are
digitized To support interchange ofthese digital materials~ encoding stan­
dards such as XML (eXtended Markup Language) (W3C 2004a) have
been proposed for digital document markup. A document strncture is real­
ized by a set of element tags that can be used to delimit data items in a
document of the specific domain. If all the delimiting tags are properly
placed in a document, the document is said to be well-formed. However.
whether an XML document is valid is determined by the Document Type
Definition (DID). a formal grammar for spooifying the stn:1Cture and per­
missible values ofXML doouments. The content ofthe dooument elements
and their markups can be spooified and validated by Il schema langnage.
such as the XML Schema (Thompson et al. 2000). RELAX. (Malroto
2000). or SOX (Davidson 1(99). The tag set ofa specific domain :is called
the ''vocabulary'' of that domain. People of the same domain could use the
same basic syntax. parsers. and assisting tools of the vocabulary. This
opens Il way for different types of document stn:1Ctures to be created to fa­
cilitate communications for various professional domains. Digital data is
thus not only :represented but also def:med in different languages. To reuse
and exchange digital information. two levels of information translation
need to be addressed, i.e. data translation fur data instances of different
formats. and sduJma tranalatwn between different schemM.

A naive way to translate data between different formats is writing a spe­
cific translator for each pair of formats. Writing such a program is typi­
cally a non-trivial task. and is often complicated by the manipulation of
data sources (Milo and Zohar 1(98). The extensible styling language
(XSL, www.w3.orglTRl2003fWD..xslll-200312111) is proposed precisely
for translating from one XML :representation to another as wen as for styl­
ing. XSL specifies and supports the transfurmation of an input document
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to another structure. and describes how to present transformed information.
XSL speci:fu:ations are. however. hard to express intuitively in a linear tex­
tual form even though the structure ofaXML vocabulary is essentially a
tree structure. Transfurmations using XSL must he created manually on a
case-by-case basis. Furthermore, writing an effective XSL code requires
some degree of programming skills and good understanding of XML's
working principle. Therefure, the current XML teclmology has limited user
population. A more general framework can he based on a common data
model (CDM) (Sheth and Larson 1990) to which the source/target data is
mapped. and a common translation language that enables the specification
and customization ofthe translation task. This would facilitate new transla­
tions. but still require considerable progrmnming effort wbenever a new
translation is to be defined (Abitehoul et at 1991).

On the other hand, meta-model based techniques (Atzeni and Torlone
1995; Bowers and Delcambre 2002; Torlone and Atzeni 2001) concentrate
on both data and schema translation. A meta-model is a higher-level ab­
straction ofdata representation than models. Meta-model based approaches
provide a uniform representation for various levels of abstractions and en­
able data and schema translation declaratively. However, most ofthe exist­
ing approaches are based on textual languages. which are not as intuitive
as graph based techniques.

It is natural to represent the structure of any digital artifact and associated
schema graphically so that specifications and translations can. be per­
formed intuitively. Aiming at providing user-friendly means for people of
various communities to use and exchange digital artifacts. we explore the
power ofgraphical visualization and automatic language generation, with a
sound underlying theory. The generated language environments can auto­
matically verify the syntactical structure of any constructed digital artifacts
and, when translation specifications are provided, automatically translate a
source artifact expressed in one encoding language or schema to its
equivalent in another language or schema.

.In the remaining part of the chapter. Section 5.2 will fIrst present a vision
of an interoperable framework based on multi-level abstractions of digital
artifacts. Section 5.3 focuses a real document to show the interoperation at
the instance level by translating it into a different format. Section 5A pre­
sents both model and schema levels of specifications using graph gram­
mars, followed by the implementations of model management operators in
Section 5.5. Section 5.6 finally sum:marizes the chapter.
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5.2 A Hierarchical Interoperable Framework

To support full interoperability across heterogeneous platforms. vocabular­
ies. and representation schemas. we propose a hierarchical interoperable
framework for not only digital information intereban.ge but also for inter­
operation of information across different disciplines.

We consider four levels of abstraction: meta-models. models. schemas.
and data instaneeB. as illustrated in Fig. 5.1. At the bottom level, Instances
contain concrete digital data, such as NCBI XML and HTML documents.
At the second level, a schema defmes the strueture of instances. Different
schemas are defined by different furmalisms. called models at the third
level. On top of these three levels. we use a meta-model to define multiple
data models. using the basic abstractions for defining models. Each level
of the architecture can be viewed as an instantiation of the level above.
More specifieally. models are partiwlar instantiations of the abstractions
defined by a higher-level model, i.e. meta-model, schemas are instantia­
tions of a model. and instance-Ievel data are instantiations of a schema.
This means that there is a general relationship between any two consecu­
tive levels: a level of information can be specified and encoded by its up­
per level in the fOlm of an encoding language (fur example. XML docu­
ments specified by DTDs or XML Schemas). The lower the level of
abstraction, the more concrete and easier it is to comprehend In the
following. we will explain an approach in details at the levels of instance.
schema, and model.

Fig. 5.1. Four levels ofabmaetion

The presented approach at the instance (dataldocuments). schema (lan­
guage rules). and model (meta) levels will serve two purposes: supporting
graphical construction of uew documents and automatic geuemtion of
documents upon validation; and supporting automatic translation of exist­
ing documents from oue encoding format to another.
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Using the ROO as a meta-model, Fig. 5.2 shows an example of hierarchi­
cal abstmction levels of meta-model, model, schema, and instance data.
together with their correspondences to the formalisms in the RGG. At the
top level. nodes and edges in the RGG represent meta-elements and rela­
tionships respectively. At any of the lower levels, a node denotes an ele­
ment of a model. a schema or an instance. Labeled with different names,
nodes have different semantics in different contexts and levels of abstrac­
tion, e.g. an element of Schema, a PCDATA of DTD, or a tag of a docu­
ment instance. An edge defines a relationship between two nodes, such as
elernent-element relationship and element-attribute relationship. Each
RGG production denotes relationships among elements. A whole set of
productions consisting ofmeta-elements defines a model. which in tum de­
fmes a schema with elements. A schema cons.isting of tag names defines
an instance. As a meta-model, the ROO enables users to define a model as
a RGG, i.e. a set ofgraph transformation productions. A specific schema is
defined by a ROO, as a host graph of the ROO at the model level in terms
of primitives. A digital document is denoted by a document tree of the
RGG from the schema level.

Fig. S.2. Hierarchical levels ofabstraction of data represootati.on

Fig. 5.3 shows the system architecture, which consists oftbree major mod­
ules, the visual object generator (VOG), the rule generator, and the visual
modeling environment (VME), which is automatically generated. In the
following, the term primitive refers to a component of a model, and the
term meta-primitive refers to a component ofa meta-model.

VOG is used to define meta-primitives. It provides a generic approach for
users to introduce It new meta-primitive suitable for the meta-model
when a new model needs a special construct that bas no counterpart in the
meta-model. This approach is considered by Atzeni and Torlone (l995) as
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Fig. 5.3. Architooture ofthe hiemrchical framework

The role generator is a visual environment fur users to define graph tranJ..

formation roles. With user-defined metrprimitives or primitives. a user
may oonstruct a graph grammar to define a model or a schema aeeording
to different types of model/schema components. Supplied with user­
defIDed rules. the mle generator oompiles and automatically generates a
visual modeling environment (VME).

Each VME consists ofa graph editor and a parser for the pre-defined graph
grammar, based on which the VME is generated. The graph editor pro­
vides users with guidance on how to draw a host graph to represent a
schema (VMBI in Fig. 5.3) or a data instance (VMB2), and prompts errors
whenever the syntax is violated. It is also able to perfOIm syntax-directed
computations, specified with individual transformatioo rules.

The above hiemrchical framework allows users to perform the following
steps to specify and transform digital artifilcts:
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1. use VOG to define meta-primitives that are able to capture the main
primitives adopted by different scbema lmguages describing struc­
tured data (XML doouments in particular) for digital arobiving or in­
tercbmge;

2. use these primitives to define a model or a schema~ wbich is effec­
tively a specific RGG~ enabling automatic generation of VME
(VMEI or VME2 depending on the level ofabstraction); and

3. further define. decompose or re-structure schemas and transformation
rules graphically within the generated VMEI to make model primi­
tives. and then return to Step 2; or define source data instances
graphically within the generated VME2 and automatically apply the
rules.

As shown in Fig. S.3~ Step 2 md the fttst half of Step 3 could form an in­
fmit)' loop~ which simulates the recursive definition in the real world. For
example~ the XML Schema is used to define XML documents~ while it is
m XML document itself: i.e. scbema is an instance of its own. Detailed
visual. model management operators and their implementations in RGGs
for schema interoperation. can found in Song et al. (2004a; 2004b) and
Song (2006).

Fig, 5.4, Meta-tool approach to specification and translation at the document level

5.3 Interoperatlon at Instance Level

As illustrated in Fig. 5.4. a document author can use the grapbical docu­
ment editor to construct a document of the desired structure by drawing a
document graph (an XML document structure is essentially a tree). Or ifa
document already exists. it could be converted into a graphical representa­
tion by an XML parser and Java JTree. The document tree~ either drawn or
generated ftom m existing document., is graphically parsed and executed



based on the graph transformation theoxy described in Chapter 2. so that
the document structure is validated and textual version generated. If
needed, the document ean be translated into a different vocabulary.

The underlying ll100hanism supporting the interopembility at multiple levM
els is a graphkal encoding language generation toolset, adapted from the
visual language generation environment. VisPro. to be discussed in Cha~
ter 8. The toolset consists of a visual object tool. Ii visual rule tool. and a
language..generation engine. A person in charge of data integration (caned
data integrator) can use the visual objoot tool to define the visual notations
for nodes (typically representing tags) and links (parent~d relationM
ships) and provide attribute types ofthe nodes. The visual rule tool inherits
the visual notations defined in the visual object tool. so that rules can be
oonBt1'UCted using nodes and links. The data integrator can then use the
visual production tool to define the XML language vooabularies and their
relationships. and specify translation rules for a target XML language. AJ;..

eording to the specified rules, the bmguagCMgeneration engine could autoM
matical1y generate a graph parserltransformer and a graphical document
editor. A seientist (information provider) would be able to use the gener­
ated tools to create formatted data without the need to know the formatting
language. In summary. the major advantages of this approach are the folM
lowing:

• The graphical representation of digital information structures and the
transformation prooess is easier to comprehend than the textual form. as
it could refloot one's mental image of the structure of a digital artifact
(e.g. a document structure).

• Automatically generated by a visual language generator. the graphical
editor and translation tool can be rapidly updated upon an information
provider's needs. The generated graphical editor can perform syntaxM
directed oomputations and syntactic checking ofany constructed digital
artifact. and if so desired. automatic translation to a different vocabuM
lary and format.

• Separation ofconcerns ofthe design and construction ofdigital artifacts
using XMLMbased languages. so that ouly a small proportion of special­
ists (as data integrators) would nced to understand the encoding stan­
dard and languages while the large majority of seientists (as~
tion providers) need not concern about detailed encoding formats.

In the fonowing we go through a detailed example to demonstrate the ideas
ofgraphical representation and transformation ofdigital artifi!ct:s through a
NCBI XML (myw.nebi.n1rn niluovlIEBlIoolBoxlXMLl) document.
and its translation into BSML (myw.bsnllorsIoyeryiewldefimlt.am).
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5.3.1 Source and Target Documents

The example document in both NCBI XML and BSML representations
is downloaded from the Web site
h.t:tp:/!wwwJealsetyang.comlbio/db/NCBI2.BSML.btmL To save the space~

we bave shortened the document by removing many tag entries that have
the same structures and replacing sucb entries with simple comments as
shown in the following NCBI XML representation.
<?xml verslon:="1.0"?>
<!- <IOOCTYPE Seq-entry PUBUC "·/JNCBIJlNCBI SeqEieIlEN"
''http://www.ncbi.nlh.govJdtdJNCBLSeqset.dtd"> ->
<Seq-entry>
<Seq·entry_setl>
<Bloseq-set>

<BiOliiElq-$eU;fescr>
<Seq-descr>
<Seqdes(:>
<.Seqdesc_(ll)l1'Iment>11] suggests ......•<JSeqdeso_commem>

</Seqdes(:>
<S~
<SeqdeIilCLUpdata-date>
<Date>
<Date Eitd>
<~>
<Date-stdJfElBr>1995<1Date-std-year>
<Oate-std month>1<JDate-Eitd month>
<Date-std:day>5<lDate-stcLday>

<JDate-std>
<JDate_Eitd>

<JDate>
<JSeqdeso_updata-date>
<JS~
<Seqdes(:>_inc. IIlOUrce, create date, and pub .•<f$eqdeEiC>

<fSeq-descr>
<JBioseq-seCdescr>

</B10l.leq-S&t>
<f$eq-entry_set>

<JSeq-entl)'>

NCBI (National Center for Biotechnology Information) has previously
been using a language called Abstract Syntax Notation 1 (ASN.l) for de-­
scribing and exchanging information, in a similar fashion as using XML·
based languages. NCBI ASN.l support modular specification by allowing
information sharing and reuse. This means that a single tag could mean
two different things in different contexts. It also allows the same name
used across different structures, while XML requires an tag names (non­
attributes) to be unique across the DTD. Due to these different language
requirements, an NCBI XML document directly translated from ASN.l is



inevitably verbose, with extensive tags. that can be observed in the above
document, Fig, 5,5 shows a screen dump of the prototype called Biotrans
when the input NCBI XML document was converted to a JTree.

Fig. s.s.lnput NCBI XML docu.tnf!l1t converted to JTree

Assume that we wish to translate any doouments written in NCBI XML to
their BSML representation. which will be much more concise, For the
above digital docmnent. its BSML equivalent is as fonows
<?xmI verslon=U1.1)" ermoding="UTF.8"'?>

<BsmI>
<Definitions>
<Sel:ltl9nces>
<Sel:ItI9nce tltIe-"tlUMINSR:" i~-tyt10001U id=UG186439" OOl'l'lITlent=:"Human

insulin receptor mRNA, COIl1plele cds,· represel'dlillI""'raw" rooIecule""'rns"IengIh"'"4723"
stmnd="ss-"

<Attribute ll8me"'''verslon" oontent""'M10061,1"""
<Attribute ll8me"'"oomment" oontent="{1] suggests that ......."/>
<Attribute Jl8m8"'"update-date" oontent="19951 6"/>
...Attrltmtesfor"~."sourceu

, "pub", and "keywords",,,...
</Sequence>

</Sequences>
<!Definitions>

<lBsml>
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We first translate the textual NCBl XML document according to its tag
structure into a graphical form (essentially a tree) whose syntax is suitable
for grammar interpretation. Although the example is for translating from
NCB! XML to BSML, the principle that we will be demonstrating equally
applies to the translation between any two XML-based docUlnents, and to
more complex and varying document structures.

5.3.2 Specifying Structures and Translation Rules

We need to devise a formal grammar (i.e. "Rules" as shown in Fig. 5.4) for
the underlying XML-based language that is able to understand and inter­
pret any sonrce documents written in the language (e.g. NCBI XML). To
support the automatic transformation of the source document to a target
document written in another XML-based language (e.g. BSML), we also
need. a transformation mechanism. Since all documents are represented
graphically as trees, it would be most natural to use a graph parser and a
graph transformer to perform the above two tasks. As the sound foundation
of visual programming languages, graph grammars would serve well the
desired graph parsing and transformation (Rozenberg 1997).

We adapt the ROO formalism to specify XML-based document structure
and transformation. As shown in the BSML listing in Seotion 5.3.1, there
are two types of attributes in this target language: the ones enclosed in a
tag (e..g. "update-date" and "oomments") and the ones represented as tags
themselves (e.g. "Attribute''). To distinguish these two types of attributes
in the final target document, we represent the former type as the nodes
connected directly to the super-vertex of the tag node, and use a vertex X
to designate the connecting point ofall the latter type ofchild tags.

The following simple example explains the graph transformation approach.
Fig. 5.6 illustrates three productions specifying the NCBI XML structure.
They define "Seq-deser" as the parent tag of "Seqdesc" Fig. 5.6(a), and
two child tags of "Seqdesc", one for "update-date" in Fig. 5.6(b) and the
other for "comment" in Fig. 5.6(c).

Fig. 5.7 demonstrates the tran.sformation process of a sub-graph involving
the use of the above three productions. In Fig. 5..7(a), the sub-graph iso­
morphic to the right graph of Production <2> and that isomorphic to the
right graph of Production <3> are redexes, enclosed in two dashed boxes.
After applying Productions <2> and <3> to the example sub-graph, the
newly transformed sub-graph is depicted in Fig. 5.7(b). Vertex. C in the
right graph of Production. <1> (Fig. 5.6) is marked by a unique number,



indicating that its corresponding isomorphic vertex in the new sub-graph
can be connected to multiple nodes, so that Production <1> can be applied
separately to the child tags "Seqdesc" of "Seq-deser". The first application
ofProduction <1> results in the new sub-grapb in Fig. 5.7(c) and the sec­
ond application generates the final sub-graph with two "Attributes" con­
nected to "Seq-descr" as in Fig. 5.7(d). Consider the step in Fig. S.7(b), the
transformation deletes the redex in the dotted box that matches the right
grapb ofProduction <1>. while keeping the vertices, i.e. C and x. that are
marked in the production. Then the left grapb of Production <1> is em­
bedded into the host graph, as shown in Fig. 5.7(c). with the "Seq-descr"
node connecting to an "Attribute" node via vertex X.

Em:'~
'1

(a) Production <;};> fur"Seqdesc"

~:-
(b) Production <2> for ''update-date''

~butel:- ~ oornmentl

Ce) Production <3> fur "comment»

Fig. 5.6. Three productions to explain graph tnmsfonnation

(a) (Il) (Il)

Fig. 5.7. Demonstration ofgraph tnmsfonnation~s

(d)

The syntax of NCBI XML is defined by the sub-graphs without dotted
lines; and the mechanism for translating the NCBI XML syntax to BSML
is defined by the sub-graphs including dotted lines. We will refer to the
former rules as the grammar. and the latter. extended from the grammar. as
the tramlafor. The grammar serves the validation and generation of docu-
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ments of the defIDed NCBI XML structure, while the translator allows
documents of the defined structure to be validated and also translated into
documents ofthe BSML structure.

A production may contain elements that serve as instructions for creating
result tree fragment. The instructions are executed when the production is
applied. For example, to convert the "update-date" fonnat from three sepa­
rate strings for year, month, and date to a single string fonnat as required
by BSML, we will attach the following action code to Production <2>in
Fig. 5.6:
ActioJ1(AAMGraph g) {

Date.value = Date-std..",Y9at + Dale-skCmollth +Date-sld_date;
}

apart from other operations that may be required for this particular produc­
tion.

Fig. 5.8 is a screen dump of Biotrans after the transfonnation rules were
entered and defined Fig 5.9 shows the output result after translation.

Fig. 5.8. "fransfol'IIllltion rules defined in Biotrans



Fig. 53. Output display ofBiotrans after automatic translation

5.3.3 Automatic Validation and Translation

We now discuss how graph transfOl'IIlation and assooiftted syntax-direo1ed
computations using the RGO formalism can be performed to achieve the
validation and. ifdesired. text processing ofany input XML doeument. We
define the productions by taking advantage of the tree structure of any
XML-based doomnent so that the doeument can be parsed (mmsfom:ted)
efficiently from tree leaves to the mot.

The parsing algorithm for XML-based doeuments is different from that of
the RGO~ because matching a right graph to a host graph is a tree-fo..tree
match rather thao gmph-fo..gmph match in the RGG. The tree-fo..tree
match can be perfom:ted much faster when using appropriate data structure
and algorithm. The parsing process proceeds in two steps:

• Search in the host graph for a redex of the right graph;
• Embed a copy of the left: graph (i.e. the root of the right graph) into

the host graph by replacing the redex.
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Repeat Steps I and 2 until the host graph is empty or no more matches for
ooy productions.

Different ftonl the process of validation, in which the parser finally pre­
sents a parsing result. i.e. valid or not, the translation process produces a
new graph ftonl the input host graph according to the translator produc­
tions. Slightly different and extended from the original RGG parser, the
translator lnechanism performs the embedding process in a copy of host
graph and adjusts the copy to a new graph as the result.

For example. by applying the grammar (excluding the sub-graphs with the
dotted lines) repeatedly to a specific diagram, we can detennine whether
the diagram represents a valid NCBI XML document. Similarly, by re­
peatedly applying the translator (including an the sub-graphs in dotted
lines), a NCBI XML document can be transfortned into a more coucise
BSML document The productions may be applied in different orders but
will produce the same result. To take advantage of the tree structure of any
XML documents, we define the production roles in such a way that effi­
cient parsing and translation can be perfortned from tree leaves to the root
The extended part (from the gmtnmar) in the translator would not affect
the transformation efficiency since its sub-graphs could all be regarded as
tenninals.

5.4 Model and SChema Specifications

This section presents the modelood schema. specifications, and shows the
basic process ofdatalmodel management by identifYing meta-primitives of
a meta-model, defining a model, constructing a schema, and drawing an
instance.

5.4.1 Identifying Meta Primitives

All the constructs used in most known schema models and formalisms for
expressing digital data fall into a rather limited set of categories. Therefore
a meta-model can be defined in terms of a basic set of meta-primitives,
corresponding to these categories.

In considering the above fact, our example lneta-model includes the meta­
primitives limited to the fonowing: object type, ordered sequence, unor­
dered sequence, choice, cardinality, key, and foreign key~ Obviously the
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meta-primitives are not complete for defining all the types ofdata models~

so the names and number of nodes may change when the meuvmodel
needs to be extended to subsume newly introduced models. To ease the
process ofextending the meta-model. we can provide the VOO for users to
specify new meta-primitives. A relationship between meta-primitives is
defined by an edge. whose semantics is determined by the nodes it con­
nects. The set of example meta-primitives inclndes eight types of nodes
(meta-primitives) as shown in Fig. 5.10.

lllimlut I 0I8eet~

~ I Otderlld~

ClKbIClKb
All I ~!IIlt(IlllIlCe

~ I CiordlmIlf.y

J:ilyIJ:ily

~ I :l'mlignJ:ily

A!llltuIll I ~
Fig. 5.10. Meta primitives ofthe meta-model

5.4.2 Defining a Model

As stated in Section 5.2~ a model that can be used to specify a schema
(scheme model for short) is a specification for the corresponding schema.
This section uses the meta-primitives in Fig. 5.10 to define an example
model for a subset of the XML schemas. which includes most of XML
Schema and DTDs. In addition, the rule generator provides a convenient
way fur users to define and add more rules to specify a complete set of
schemas for the structure of XML documents. Fig. 5.11 shows the model
defined by a graph gra.mmar~ which consists of 14 rules. and the iJh pr0­
duction is marked with <1'>.
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Fig, 5.11, A subset ofscbemas defined by the meta-model

The model defines relationships among Elements and Attributes etc.
Rules <1> and <5> declare that an element can enclose arbitrary number
of other Elements and Attributes respectively. Rule <2> defines that an
Element may have Iii Cardinality constraint. Rules <4> and <8> define
that an Element may have an arbitrary number of Keys or Foreign Keys.
Rules <7>, <11>, and <14> defme that an Element may have a Se­
quence, a sequence may include any number of Elements, and a Se­
quence may have a Cardinality constraint, respectively. Rules <10>,
<12>, and <13> define the same relationships among Elements, Cardi­
nalities, and Choices. Rules <3>, <6>, and <9> define the relationships
among Elements, Cardinalities, and All.

5.4,3 Constructing 8 SChema

After the mle generator parses the rules that defme the model, a VME is
automatically generated. Using the VME,. the user draws and customizes a
host graph, i.e. an instance ofthe model, to define a schema. Then with the
user's intervention, the VME transforms the host graph into a set ofmIes
suitable for the system to define the structure ofdata instances. During the
procedure users could interact with the system to adjust the schema, I.e. the
procedure is semi-automatic. To construct a schema using VME, users
should follow the three steps described in the following three subsections.
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5.4.4 Drawing an Instance Data

Under the syntax guidanee of VME, the user draws 8. host graph in the
generated VME to represent the structure of the expected schem.a. Fig.
5.12 shows an example of the host graph conforming to the rules described
in Fig. 5.11. The host graph defines the structure of the schema, in which
the name of each node denotes the type ofthe node, such as Element and
Sequence. The host graph does not however define the instance of the
type, such as the name of an element or range of the cardinality, which is
domain specific. The framework cannot determine the value of each node
automatically. Therefore the host graph does not completely define the
structure of a document, and rest of the job has to be taclded by the user.
I.e. to customize the host graph in the VME.

Fig. 5.12. An example schema conforming to the rules in Fig. 5.11

5.4.5 Customizing the Host Graph

To oustomize the host graph means to specifY the parameters ofeach node
according to the domain requirement, such as the name ofan element, the
range of the cardinality, and so on. This oould be done very easily with the
generated VME by editing each node. Fig. 5.13 shows the user-defined
domain specific schema based on the example in Fig. 5.12. The name of
the node Sequence is the same as that in Fig. 5.12, but the meaning is dif­
ferent, the one in Fig. 5.12 defines the type of the node, while the Se­
quence in Fig. 5.13 represents the instmce itself The DID defines a Se­
quence using a comma "." between every two elements.



Fig, 5,13, UseJ'-defined schema corresponding to the schema in Pig. 5.1;2

5.4.6 Adapting the Rules

After being customized in the domain context. the host graph represents
the strw:tuIe of a schema. From now on we refer to the host graph as
schema graph. Before the rule generator processes a schema graph, it
needs to be adapted because ofthe following.

1. Although we can simply make the schema graph a right graph of a
rule, we still need a left graph, because each rule of a graph grammar
consists ofa right graph and a left graph.

2. As some nodes in the host graph Clltl'Y structural semantics, they
should be converted to the corresponding notations in the RGG for
the parser to recognize.

3. The number ofnodes in the right graph influences the performance of
the parsing process, whose time complexity is partially determined by
the maximum number of right graph as discussed in Chapter 2. The
larger the right graph is, the more costly the parsing process is. So a
large schema graph should be broken into smaller ones to improve the
pars.ing performance while kept correctness.

4. In order to further construct roles for data translation based on the
schema, the schema graph needs to be decomposed.

The VME automatically adapts the schema according to the following
principles.
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• Remove those nodes that carry strw::tuml semantics, such as cardi­
nality and attribute, and add appropriate attributes to the nodes ass0­

ciated with the removed nodes.

• Trim vertices of each super-vertex, i.e. remove those vertices not
used in the schema, such as the vertex links to the cardinality node.

• Break any schema trees ofmore than three levels to smaller trees to
improve the parsing performance.

• For each sub-graph of the schema graph, add the left graph to con-
stmct a role.

The user then adapts the automatically generated roles in the role genera­
tor. The role generator could in tum parse the roles and generate a new
VME for the user to draw instance documents. Fig. 5.14 shows the result­
ing roles generated from the user-defined schema in Fig. 5.13. In the gen­
erated VME, the user could draw and parse host graphs, which are the in­
stances ofthe schema.

5.4.7 Drawing an Instance

The VME generated by the role generator from a schema graph enables
users to visually define any instance documents oonforming to the schema.



Fig. 5.15 illustrates an example doow:nent conforming to the schema rules
defined in. Fig. 5.14. In the VME, a user cm draw my host graph, which
defines the structure of 811 instEmce document md conforms to the rules
used to generate the VME, i.e. the schema. So far, the host graph does not
have concrete data except the structure. TIle framework cannot determine
what the user Wlmts data to represent; therefore the user has to customize
the data instEmce in the structure.

Fig. 5.15. User-det1ood document structure corresponding to schema in Fig. 5.14

In the host graph, the name of each node is a markup in a markup 1811­

guage, which denotes the data type of the node and could enclose an in­
stEmce value. For example, StName in Fig. 5.15 is of data type "string",
md could have my string as a value, such as "Lawrence". For sinlplicity,
Fig. 5.15 does not show the detailed value of each node. After the user in­
stEmtiates the structure, the document is completed.

Recall the process of constructing a schema, the proooss of drawing 811 in­
stEmce follows a uniform procedure except that the host graph of an in­
stEmce needs not to be adapted for further defmition.

5.5 Model Management Operators

Comparing to data instEmees, models are far more complex to intemperate
as little help can be found in query languages. Model management systems
are proposed to ease the programming for model operations (Bernstein
2003). A model management system consists of a set of operators which
represent the generic operations on input models. As described by Bern­
stein (2003), the main model management operators are defined as follows:
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• Match - talres two models as inpnt and returns a mapping between
them.

• Compose - takes a mapping between models A and B and a map­
ping between models B and C. and returns Ii mapping between A and
C.

• Oiff - takes a model A and mapping between A and some model B,
and returns the sub-model of A tbat does not participate in the map­
ping.

• ModelGen - takes a model A. and returns a new model B tbat ex­
presses A in a different representation (i.e. data model).

• Merge - takes two models A and B and a mapping between them,
and returns the union C of A and B along with mappings between C
and A. and C and B.

These operators are applied to models and mappings as a whole, rather
than to their individual elements. The operators are generic in the sense
that they can be utilized fur different kinds ofmodels and scenarios.

Consider a typical example ofbuilding a data warehouse (Bernstein 2003).
Given a. mapping mtlPJ from a. data source 81 to a. data. warehouse 8w• we
wish to map Ii second source 82 to 8w. where 82 is similar to 8J (Fig. 5.16).
First we call Match(8lt 82) to obtain a mapping mtlPl between 8J and
tbat shows which elements of 8'/ are the same as those of 81- Second, we
call Compose(mapJ, map2) to obtain a. mapping mapJ between 81 and 8w•
which returns the mapping between 8w and the objects of8zco:aesponding
to the objects of 81. To map the remaining objects of 82 to 8w• we ca.l1
Oiff(8z, mtlPs) to :find the sub-model 8Jof82tbat is not mapped by mtlPJto
8w• and msP4 to identifY the corresponding objects between 82 and 8J• We
can then call other operators to generate a warehouse schema for 8J and
merge it into 8w• Comparing to prograrmning the whole system for all the
individual interopemtion requirements. the model~t process re­
duces considerable progrmmning effort by composing generic operators.

Given: Sit maph Sw
1. map2 = Match(S"S2}
2. mapa = Compose(mapl,map2)
3. <83. map,.;> = Diff(S2. mapa)

Fig. 5.16. Using model management to help generate a data warehouse



5.5.1 Hierarchical Operations

Various data models and mappings are specified by different syntaxes,
which are mostly defined in natural languages in spite of some formal at­
tempts.

The visual model management approach provides a formal visual represen­
tation of data models and mappings defined by the RGG as inputs of
model management operators. It exploits graph grammars in defining the
syntax ofdata models. The parser would detect any syntax violation of in­
put data models and mappings. The grammatical approach also sets a
foundation for defming various model management operators by graph
transformation. Inputs to an operator are viewed as a set of host graphs
compliant to the predefined abstract syntax.

Model management operators can be specified at two levels, i.e. specific
operator and generalized operator. A specific operator is a low level de­
scription of an operator on a specific input, and presents users a concrete
image of the expected output and interface for tuning the result. A specific
operator is automatically generated. on specific inputs through a general­
ized operator that is at a high level abstraction, and can be applied to gen­
eral inputs. The generalized operator graphically describes the algorithm
used to transform the input to output of the operator, I.e. the algorithm is
performed through a set of graph transformation rules. Since most model
management operators require operations on mappings, I.e. results of the
match operator, a generalized operator cannot produce perfect result with­
out human intervention. But at a high level of abstraction, a generalized
operator is hard to be adapted on specific inputs and is therefore necessary
to cooperate with iii. customizable specific operator.

The two-level hierarchy of operators defmes two levels of system-user in­
teractions, Le. de3tgn level and operation level. At the design level, experts
of model management and graph transformation describe the algorithm of
an operator by graph transformation rules, i.e. generalized operator. At the
operation level, users, such as DBAs, perform metadata-intensive man­
agement tasks by adjusting and exewting specific operators, which are
generated automatically from generalized operators (the process will be
described in details in Section 5.5.3).

Fig. 5.17 shows an overview of the visual model management system,
which embeds a set of predefmed generalized operators. Users compose
the operators by scripts or command line to construct metaclata applica­
tions. According to the generalized operator the system generates a set of
specific rules as an interface to accept user's customization. During each
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step of exeeution, users may adjust the customizable specific operators to
obtain desired output rather than adjusting output directly which could be
error-prone. After specific operators are parsed, 11 visual environment is
generated, which produces final results ofthe operator.

Fig. 5.11. Operation Arehitecture

The two-level hierarchy of graphical operators presents flwuDility and
clear-cut between two types ofmodel management users. Generalized 0p­
erators can be applied to host graph directly. Genemlized operators operate
on the type of nodes, e.g. mapping element. reference element and so on.
Therefore, generalized operators define an overall transformation, i.e. any
elements with the same type have the same transformation action accord­
ing to the rules. However if some specific elements, such as a reference
element book, need to be changed, a generalized operator cannot help. One
has to count on the specific operator. Since it is hard to draw a specific 0p­

erator for each host graph (or a set of host graphs), one can apply general­
ized operators to specific host graph to generate a specific operator, which
can be customized afterwards. The translation is totally di:f:ferent from the
original ROO translation, 8S it generates another set ofmles.

5.5.2 Graphical Representation of Models and Mappings

A data model contains a set of objects and various relations between the
objects. An object could be an entity in ER models or an element in XML
schemas, and a relation could be an "is-a" or "has-a" relation. Each ob­
ject has an identity and type, and each relation has properties denoting its
semantics, such as the min and max cardinality.

We represent a data model, e.g. ER model, by a host graph in terms of a
directed node-edge diagram. A node represents an object. and an edge



denotes a relation. A node has a name and a type corresponding to the ob­
ject the node represents. The attribute of an edge defines the relation be-­
tween the two connected objects.

Graphs of a data model should be compliant to the syntax of that model.
For example, two entities of an ER model cannot be connected directly.
Such a syntax is defined by graph grammar mles. With these mles, one can
easily draw models under the syntax guidance ofthe ROO toolset.

A mapping. MapAB, defines how models A and B are related (pottinger
and Bemstein 2003) as shown in Fig. 5.18. Many proposals use graphical
metaphors to represent schema mappings like in Rondo (Melnik et at
2003) and Clio (Miller et at 2001). These mappings are shown to the user
as sets of lines connecting the elements of two schemas. This kind of rep.
resentation is simple but not as powerful as SQL view (Madhavan and
Halevy 2003) or that ofBernstein (:2003). SQL view is not a generic repre­
sentation for mappings among heterogeneous data sonrces, such as XML
schemas. On the other hand,. mappings are stmctnred instead of flat bi­
directional, and hard to be described by simple two-way correspondences.
The mapping stmetn:re described by Bemstein (2003) is an appropriate
compromise, being generic yet powerful fur describing mappings.

Fig. 5.18. A mapping represented in ROO

We represent mappings as special data models. A mapping has only one
relationship type, i.e. has-a relationship, and three element types, i.e.
mapping element, reference element and helper element. A mapping ele­
ment specifies how two referenced models' elements are related, such as
equality, or similarity, such as node Equal in Fig. :5.18. A reference ele­
ment serves a reference to the element of two corresponding models, such
as those nodes of Model A in Fig. 5.18. The relationship between a map-
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ping element and a reference element is denoted by a dashed line. A helper
element is a make up element tn represent extra semantics of a mapping.
For example. Intros is a helper element indicating that Bio and Intra can
be composed tngether to form a detailed and official description ofAuthor
as shown in Fig. 5.18.

The syntax ofmappings is defined by a graph grammar in Fig. 5.19, which
includes five produetion rules. The fIrSt production shows that the initial
state of the mapping is a mapping element. Production <2> shows that
each mapping element can be connected tn and has the flas..a relationship
with more than one mapping element since vertex F is marked Produc~

tions <3> and <5> define the relationship between the helper and mapping
elements. i.e. they may have the has-a relationship in either direction.. The
fact that a mapping element can have multiple reference elements is speci­
fied in Production <4>, and the relation between a mapping element and a
reference element is denoted by a dashed edge.

5.5.3 Implementing Operators by Graph Transformation

Model management operators ta.ke data models and mappings as input
and generate another set of data models and mappings as output, and are



described by a set ofgraph transformation rules. This section illustrates the
graphical representation of two operators. Merge and ModeIGen. The
same principle applies to other operators.

5.5.4 Merge Operator

Merge takes three inputs. i.e. model A, model B, and a mapping between
A and B, and returns the union model C of A and B along with mappings
betweeu C and A, and between C and B (Bernstein 2003). The input of
merge is S := (A. B. MAJ, which consists of three graphs representing
model A, model B, and the mapping betweeu A and B. After applying
merge to S, output T consists of five graphs, i.e. T:; (A. B. C. Mh Mz),
where A, B are copies of input graphs, C represents the output union
model, M1 and Mz represent mappings between C and A, and between C
andB.

The semantics ofmerge can be briefly described as follows: Tbe output of
merge is a model that retains all non-duplicated information in A, B, and
MapAB; it collapses the redundant information declared by MaPAB.

Fig. 5.20 shows a set of graph transformation rules for merging models A
and B as defined in Fig. 5.19. Eacb production rule shows wbat the result
ofmerge should be. Production <1> defines that root nodes of input mod­
els, Book and Ebook. will produee an output data model with a root node
Book, and two mappings. Productions <2> and <3> are similar to Produc­
tion and copy the referenced node to the output and set a correspon­
dence betweeu the output and input models to form two output mappings.
Production. <4> merges the structured mappings by defining a new struc­
ture in the output model with the nodes referenced by the mapping element
and constructing two mappings from elements in the input models to the
constructed elements in the output models. Production <5> shows the
transformation with a helper element (Intros in this case), and is similar to
Production <4>. Productions <6> and <7> copy the input elements that
have no referen.ee in the input mapping to the output and establish a map­
ping between the original element and the copy.

Comparing to an operator algorithm, the graph transformation rules intui­
tively and explicitly specify wbat the result should be, and therefore a user
with little domain knowledge can manipulate the rules to meet the specific
requirements. For example, ifone wants to use EBook rather than Book as
the root of the output data model, be/she can. change the node Book in the
left grapb ofProduetion <1> to EBook.
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5.5.5 ModeIGen Operator

ModeiGen takes a model A as input and returns a new model B based on
a mapping between A and B (Bernstein 2003). In the visual model man­
agement approach, ModelGen takes input S = MaY, where A is a
:model, MAD is a mapping, and output is T =: (B). ModelGen transforms
from input graph S to T by applying a set of transformation mles P,
T=A (8, Pl·



For the input (A, MapAB) in the example of Fig. 5.18. the ModelGen is
described by the graph tnmsfoIll1ation rules in Fig. 5.21. Productions <1>,
<2>, and <3> show that the result of a one-to-one correspondence is cop­
ied directly from the reference elements of model B in the mapping. In
Productions <4> and <5>. the reference elC:1nents in model A are mapped
to the elements in B via a complex structure ofmapping elements or helper
elements. For example. Production <4> produces new elements by dupli­
cating reference elements ofthe mapping, e.g. LName and FName.

Fig. 5.21. ModelGen by graph transfutmation rules

ModelGen on the input (AJ M<}je) does not produce model B accurately. It
cannot produce element summary of the original model B, because the
input S (A, M;m) has no such element. To maintain a high fidelity of the
output model one can add summary to the left graph, so that the parser
will produce the element missing in the output model.

As shown above, two operators, Merge and ModelGen, are defined by
transformation rules on specific inputs. It is easy and feasible for users to
specify the specific transfOIll1ation rules on small-scale inputs, but not for
large data models. We therefore should automate the process of defming
rules for specific inputs by exploiting traditional algorithms, or generaliz­
ing the specific graphical operators, as discussed in the following subsec­
tion.



5.S Model Mlmageme:nJ: Operators lIS

5.5.6 Generalization of Operators

This subsection describes the concept of operator generalizlWon by going
through the merge operator. &sed on mappings. generalized graph trang..
formation roles visually describe the algorithms for the corresponding 0p­

erators at a level higher than specific operators. Ideally if we could define
aU the detailed algorithms of model operators by graph transformation
mleg,. model management could be an automatic and visualized process.
Due to the ad hoc Dature. however. generalized operators still need to be
customized for specific inputs, for example the ModelGen in Fig. 5.21
needs to add summary to Production <1> for an accurate output.

Therefore generalization aims at describing algorithms of operators by
graph transformation and when applied to a specific input,. the parser gen­
erates the corresponding specific operators. which are customizable. The
approach shown in Fig. 5.11 could be fully interactive and also visualized.

For example, merge could be generalized as in Fig. 5.22, which defines
five transformation mles. Unlike the merge algorithm, the transformation
mles can be customized on the input. Generalized operators do not resolve



conflicts, which are to be solved by specific operators, Production <1>
merges an elementary mapping, Le. one to one correspondence as Produc·
tions <1>, <2>, and <3> in Fig, 5.20. The output consists of two mappings
and one data model together with input elements. In the middle of the left
graph of Production <1>. the reference element of the output !nOdel is a
copy of one of the mapped input elements, the element in model A in this
case. The remaining two output reference eletnents are copies of the corre­
sponding input eletnents. Two mapping elements on top are output ma~
pings, which map the middle reference eletnent to the left and right refer­
ence eletnents. Production <2>. together with Production <4>, tnerges the
structured mapping eletnent8,. such as the equal eletnent of Production
<4> in Fig. 5.20. The merge is achieved by making the mapping eletnent
and the related reference element a composite eletnent and then extracting
the reference element to fofln the output eletnents in Production <4>.
Sitnilarly Productions <3> and <5> transfofln the structured helper ele·
tnents by composing them in <3> and then extracting in <5>.

When the rules are applied to a host graph, the parser matches the nodes in
the host graph to the nodes of the same type in the right graph. For exam­
ple equal in Fig. 5.18 is a mapping element of Fig. 5.22. Because the
rules are based on the graph grammar in Fig. 5.20, they can be applied to
any host graphs conforming to the grammar.

Sitnilarly, the ModelGen operator in Fig, 5.22 can be generalized and the
generic !nOdel managetnent visualized. But users cannot custome gener­
alized operators like they do with specific operators. As shown in Fig,
5.17, the two types of operators play complementary roles to provide a
visual, generic, and customizable lnOdelmanagement enviroUlnent.

5.5.7 A Parsing Example

This section describes the transfoflnation process of tnerging input data
models and lnapping illustrated in Fig, 5.18. The corresponding merge
operator is defiued in Fig. 5.20. The output includes !nOdels A and B (i.e.
copies of input), output model C, and mappings MapAC and Mapac.

The fIrst redex found is that of Production <6> in Fig. 5.20, i.e, ISBN of
model A. The parser copies ISBN of the model and connects it to the
mapping element Equal. A redex of Production <7> is found in the second
step, which tnerges Summary eletnent of model B.

Production. <5> is applied in the third step, which merges mappings with
helper eletnents. The helper element Intros and two connected mapping
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elements. BID and Intro, are moved to the output model. Two mapping
elements in MapAC and MaPBc are connected to BID and Intro respectively.
In the forth and fifth steps, the parser applies Productions <4> and <3> re­
spectively.

Due to the space limit, only the last step is shown in Fig. ,5.23, when Pr0­
duction <1> is applied. The mapping between Book and EBook is found
as a redox and replaced with two mappings. After the application of this
rule, the output model C and two mappings between C and A. Bare fmally
produced.

5.6 Summary

This chapter has presented a graphical methodology for specification and
interoperation based on the RGG formalism. Onee the dooument strueture
ofan XML dialect and its conversion to an alternative dialect structure are
specified through grammar rules and translation rules, a visual transforma­
tion environment with a graphical editor, a parser and a translator is auto­
matically generated. XML documents conforming to the former dialect can
then be graphically created using the graphical editor, and if desirable.
automatically translated into the target dialect At the schema and meta­
model levels, interoperation can be achieved through high level model
management operators implemented using the RGO transformation rules.
Visual language generation mecbanism, to be discussed in Chapter 8. helps
handling different levels of operators, i.e. from generalized operators to
specific operators, to ease the user's effort.



5.7 Related Work

Using visual progmmming and visual language approaches to work with
XML has mostly been fooused on visual query languages, such as VQL
(Vadaparty et al. 1993), XML-GL (Ceri et aI. 1999), and Xing (Erwig
2000). For example, Xing is a visuaIlanguage for querying and transform­
ing XML data. It achieves XML transformation and restructuring using
some rules that combine the patterns of queries and results returned by
queries. It uses nested boxes to represent XML data such what each ele­
ment tag is written on. top of a box while aU tlre attributes of the element
are enclosed in tlre box. Such representation is essentially textual, supple­
mented by hierarchical boxes surrounding the text.

On the: other end of the spectrum, VRDL (Visual Repository Defmition
Language) (Minas and Shklar 1996) aims at harnessing the massive
amount of data on tlre Web by imposing a logical structure visually and
encapsulating chunks of original infonnation into metadata entities. Simi­
lar to our approach, ¥ROL is generated by a visual language generator
(Minas and Viehstaedt 1993) and thus supports graphical and syntactic ed­
iting. The visual notation used in VRDL is based on and adapted from the
Nassi-Shneiderman diagram.

Graph based techniques, such as hyper-graph data model (HOM), and Te­
los (Mylopoulos et at 1990), construct schema trlll1.sformation operators,
perform inter-model transfonnations, and define· inter-model links in terms
of graph. The notations used by these techniques are defined in a natural
lan.guage, and thus tlre ability of automated analysis and transformation of
graph-based models is limited. Th.erefore most of the operations on these
data models have to be specified in textual languages. For example, HOM
requires considerable effort to specify the transformation rules and links in
an appropriative textual language, and Bowers and Delcambre used RDF
(Lassila and Swick 1999) to represent model-based information translation
(Bowers and Delcambre 2002).

Of the general textual approaches to the automatic translation of XML
documents, Xtra (Su et aI. 2001) aims at automatic transformations be­
tween XML documents by discovering a sequence of trlll1.sfonnation op­
erations from tlre source and target DTD trees. The operations are: used to
generate an XSL script, which can then be applied to source XML docu­
ments to transform them to XML documents conforming to the target
DTD. The user needs to be familiar with tlre XML technology to be able
to use tlre Xtra tool. A similar method is that of Leinonen (Kuikka
et at 2002; Leinonen 2003) which offers semi-automatic transformation
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between two XML struct:ures based on the input of both source and target
DTDs and user-provided element mappings. Other textual approaches in­
clude those used in ARTEMIS (Castano and Antonellis 1999) and Clio
(Van et al 2001), both based on relational schema mappings. Due to the
flat nature of relational scbemas, such systems could not properly process
hierarchical XML scbemas. Also based on database schemas, TransScm
(Milo and Zohar 1998) uses rules to match similar document components
for most common cases, and aIlows the user to custom.i.ze the rules for
more complex cases. Other approaches include the use of declarative lan­
guages (Clue! et aI. 1998) and wrappers (Chen and JanliI2003; Shui and
Wong 2003). These approaches offer neither automatic stJ:'Ueture valida­
tion, nor means for visual representation and specification.

As a visual programming environment built upon the Cirous transforma­
tion language (Vion-Dury et aI. 2002) for XML document transformation,
VXT (Pietriga et aI. 2001) allows users to construct tree-maps to represent
nested document structures. Similar to the approach in this chapter. its
transformation is specified by a set of rules, but different in that VXT rules
are at the same level of abstraction as XSLT and relies on the transfon:na­
tion power ofCirous (Vion-Dury et a1. 2002) rather than graph grammars.
Additional notations are introduced for constructing the rules by linking
the tree elements, which would potentially clutter the display space.

Though model management is a relatively new research area, its promising
and exciting potential has attraeted much attention and made significant
advances in several aspects since it was first proposed (Bernstein et aI.
2000). In the transformation perspective, according to Bezivin et aI.
(2003), model management may be considered the 3rd generation, with
text scripts like the awk Unix command being the first generation and tree
scripts like XSLT being the second.

Various systems fur model management have been presented. Cupid
(Madhavan et aI. 2001; Madhavan and HaIevy 2003) and Clio (Miller et a1.
2001) match two models and output the mapping between them, per­
forming the match opera:tor. Merge has been a hot spot in database re­
search area for a long time. Buueman et til. (1992) described a theoretical
foundation of merga. In the context of generic model management, there
are various imple1:Dmtations of the operator. such as Pottinger's approach.
which presents the operator based on the BDK algorithm (Pottinger aud
Bernstein 2003), and data integration project Clio (Miller et aI. 2001) that
is based on lit query language specific to databases or XML schemas. Most
ofthe approaches concentrate on parts ofgeneric model management.



Rondo (Melnik et al. 2003) is the first complete prototype of the generic
model management system.. which defmes the key conceptual structure of
models, mappings, and selectors. Melnik et al presented an algorithm for
the merge operator as an example, and applied it to XML schemas and
SQL views. Rondo represents mapping between two data models by a set
of correspondences, rather than by a model. Comparing to the interactive
and customizable approach in this chapter, Rondo is like a black box to us­
ers and presents no intuitive interface for users to customize.

Model management is also combined with peer-to-peer computing tech­
nology (Bernstein et al. 2002) and further used as an infras1J.1.WtUre for fu­
ture Web data representation, notably the semantic Web (Halevy et al.
2oo3a). Piazza (Halevy et al. 2003b) offers a language for mediating be­
tween data sources over the semantic Web. Piazza describes mapping by
an adapted query language and has more sophisticated mechanism to re­
trieve complex data from RDF and XML documents. The appropriate
mapping language is derived from XQuery and is complicated for a Web
page designer to map some Web pages to others. Users or designers have
to resolve conflicts manually~ The complex query language could poten­
tially hinder the deployment ofthe Piazza system.

Using graphs to represent and manage data models is not new, and there
are many proposals based on graph grammars. Rekers and Schf1rr (I997)
presented an ER data model specified by layered graph grammars. Schurr
(1994) also proposed the Triple Graph Grammar to represent and support
the specification of interdependencies between graph-like data structures.
Different from the approach presented in this chapter, the TGG specifies
the translation from input graph,<; to output graphs in a generic fashion and
does not consider mappings between input graphs.. We explicitly define the
relationships between input graphs that represent data models, and con­
struct graph transfurmation rules for each operator based on the mappings
such that the operators are customizable.

Jahnke and Zundorf (19(8) presented varlet, a database reverse engineer­
ing environment based on triple graph grmmnars. The varlet environment
supports the analysis of legacy database systems, translation of any rela­
tional schema into a conceptual object-oriented schema. More recent work
of Wermelinger and Fiadeiro (2002) focnses on software architecture re­
configuration using an algebraic approach, Le. category theory. Consis­
tency of model evolution based on real-time UML is further investigated
by Engels et at (2002). These graph transformation based approaches ad­
dress specific aspects ofmodel management.



Chapter 6 Software Architecture Design

6.1 Introduction

Software architecture and design (Shaw and Garlan 1995) are usually
modeled and represented by informal diagrams. 81lCh as architecture dia·
grams and UML diagrams, While these graphic notations are easy to un·
derstand and are convenient to use. they are not amendable to automated
vmification and transformation, The developer bas to rely on personal ex:·
perience to discover errors and inconsistencies in the architecture/design
diagrams, She also bas to manually transform an architeetureldesign dia·
gram while needed. These processes are tedious and error·prone, This
chapter presents an approach that abstracts UML class diagrams and archi·
tecture styles into graph grammars. These grammars enable a high level of
abstraction fur the general organization ofa class ofsoftware architectures,
and form a basis for various analysis and transformations. In this approach.
software verification is performed throngh a syntax: analyzer. Architecture
transformation is achieved by applying predefined transformation meso In
general. the presented approach facilitates the following aspects:

• Graphs are used to specify software by distinguishing individual
components and their relationships. Using graph grannnars as design
policies. the presented approach provides a powerful mechanism for
syntactio checking and verification. which are not supported by most
current tools.

• In addition to software design. and verifieation. the presented ap.
preach facilitates a high level of software reuse by supporting the
composition ofdesign patterns. and uses graph rewriting techniqnes
in assisting the transformation of software architectures and in~
ing the existing products.

The rest of this chapter is organized as follows. Section 6.2 outlines the
approach. Section 6,3 illustrates how to verify software design. using a
graph grammar. Section 6.4 demonstrates the support for the composition
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of design patterns, Section 6.5 shows the meebanism for software architec­
ture transformation. Section 6,7 summarizes the chapter.

6.2 Designing Architectural Styles

Having introduced the Reserved Graph Grammar in Chapter 2, we explain
the definition from building blocks, i.e. components and connectors, to
high level specifications, i.e. architectural styles. An architectural style
specifies the constraints on configurations ofarchitectural elements (Mehta
and Medvidovic 2003).

Arehitectural styles ran in two broad categories (Oarlan and Allen 1994).
The idioms andpatterns refer to global organizational struetures, Le. pipe­
filter style. The reference models include system organizations that pre­
scribe specific configurations of components and interactions for specific
application areas. A common pattern can be easily commnnicated and nn­
derstood among a broad group of people while a reference model can be
more efficient in a specific domain by enforcing domain-specific con­
straints. The following description illustrates the specification of a set of
common patterns gniding the composition of a real-time system, and a ref­
erence model can be prescribed following the same principle.

6.2.1 Components and Connectors

The building blocks of an architectural description language are: 1) com­
ponents, 2) connectors, and 3) architectural configurations (Medvidovic
and Taylor 2000). Components denote various nnits of computation, and
connectors model interactions among components. A configuration repre­
senting an architectural structure is specified by connecting components
and connectors. In the grammatical approach, nodes arc used to represent
components, and edges model connectors between components (Kong et
at 2006). A graph grammar "glues" various components and connectors
into a meaningful architecture.

As described in Chapter 2, a node in the ROO is organized in a 2-1evel
hierarchy, The name of a node denotes the type of a component, while
vertices are used to define ports l referring to the provided and required

1 ACts lUllY diffar in too terminoloID' ofports. For example, l1ll int~fttce in UnlCon (Shaw et al. 1995)
is apia)'".



fimctionalities. Connectors used to model interactions amoog components
are specified in the same fashion as components (Medvidovic and Taylor
2000). Vertices in a connector node denote roles of communication proto­
cols.

8.2.2 Architectural Styles

Having a vocabulmy ofarcbitectuml elements, i.e. component and connec­
tor types. a graph grammar specifies an architectllra1 style, which denotes
constraints on configurations of architectural elements (Metayer 1998). A
graph grammar is made up of a set ofprodnetions, and each production il­
lustrates the composition of sub-systems from the right graph to the left
graph. All possible inter-eonnections between individual components need
to be defined in the graph grammar. Any legitimate connection can be de­
rived from a sequence of applications of grammar rules. Conversely, an
un-expected link signals a violation on the graph grammar. Therefore,
parsing a host graph representing an arohitecture can validate the structural
integrity. The parsing process is a sequence of R-applications, which is
modeled as recognize.select-execnte as explained in Chapter 2. This proc­
ess is continued until no production can be applied. If the host graph is
eventually transformed into an initial graph, the parsing process is success­
ful and the host graph is considered to represent a valid arohitectm:e satis­
tYing the structural requirements enforced by the graph grammar.

The pipe-filter style is made up ofpipes and filters. A filter having a set of
input and output ports reads streams of data on its input and produces
streams of data on its output. A pipe having a source role and a sink one
transforms information from the output ofone filter to the input ofanother
one. Building on pipe and filters, an arohitectm:e conunitting to the pipe­
filter style must respect some structuml constraints, e.g. a source role
needs to attach to an output port and a sink role to an input port.

In order to investigate whether a user-defined architectore observes con­
figuration constraints of a style, a graphical representation of an architec­
1me friendly to end-users needs to be automatically transformed into a
node-edge diagram. suitable for the RGG graph transformation engine to
analyze the structural integrity. In general, a node in the ROO indicates 8

component (8 connector) and the vertices within the node represent ports
(roles). For example, a pipe is represented by a node labeled Pipe, which
has two vertices named Sink and SRC denoting the sink and source
roles respectively (the vertices should be named with a clear meaning and
vertex labels within the same node are distinct from each other). In order
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to denote a filter with an arbitrary number of ports, we represent a filter by
a graph :instead ofa single node as the following:

• A node labeled Filter with two vertices I and 0 represents the filter
component..

• Nodes labeled I_Port with two vertices P and F indicate the input
ports within a filter component. An edge connecting the F vertex of
an I-Port node and an I vertex of a Filter node indicates the belonging
relationship between an input port and a filter. The other vertex P at­
tached to the Sink vertex of a Pipe node represents a data flow.

• The output. ports are processed in the same fashion as the input ports.

Fig. 6. 1(a) shows an arehiteeture of the pipe-filter style. According to the
above principle, a corresponding internal graphical representation used by
a ROO parser is automatically generated as shown in. Fig. 6.1(b).

--------------------,~-_._----_.--~---------,
: I:'tlll'1 I
I : I :
I II I
I II I
I I I I
I I I 1
I II I
I I I I
I 11 Ipn I: I
I h :
I II I
I II I
I II I

: (a) An architecture ofthe :: :
: pipe-filter style : : :
I II 1
~-------------- ': :

,.. .J Ute!) tel) I

1 :

: (b) An alternative representation in the ROO :

~---------------------------------_.

Fig. 6.1. Graphical representations ofa software architecture,

The necessary connectivity among components is stated through the right
graph of a production, i.e. the application condition. which a host graph
must fulfill. Application conditions, however, cannot express the condition
which cannot be present for a production to be applicable. Therefore, the
negative application condition (Ermel et a1. 1999) is introduced. For ex­
ample, Production 1 in Fig. 6.2 uses the negative application condition,
expressed by a rectangle crossed by a line, to define the condition that an
initial graph is derived from a single component Filter without any other
component..



Fig. 6.2 gives a grammatical specification prescribing a pipe-filter style. In
particular. Production I demonstrates that an initial graph denoted by 1, is
abstracted from a Filter node. Production 2 abstracts two filters into one
filter. Production :3 states a data flow between a pair ofpipes.

The client-server style has two types ofcomponents. i.e. the server and the
client. The server is able to provide services to clients. A dispatcher being
a connector (represented by a node labeled Dis as shown in Fig. 6.3) serves
to dispatch requested services to appropriate clients. Fig. 6.3 presents the
rules constructing a class of arehitectnres committing the client--server
style.
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Fig. 6.4. A graph grammar defIning the event-based style

Components in an event-based style, represented by Object nodes, interact:
with each other through event broadcast, Le. the occurrence of an event
can invocate methods in components, The connector distributor takes an­
nounced events and transforms them into method invocations. Since an
OW'eel can be associated to an arbitrary number ofevents and methods, we
represent an object through a graph in the same fashion as a filter. Fig. 6.4
illustrates a graph grammar defming the structural properties shared by a:r-­
chitectures within the event-based style.

6.3 Designing an Architecture

Supporting a set of general architectural styles, a graph transformation en­
gine within a generated visual language environment can validate user de­
fmed architectures against architectural styles,. The following section goes
through a toll gate example to explain the designing of a system using mul­
tiple general architectural styles,

6.3.1 Toll-Gate8

In a road traffic pricing system, drivers of authorized vehicles are charged
at toll gates automatically. The tolls are placed at special lanes called green
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lanes. A driver has to install a devioo (called an ezpay) inside hislher vehi­
cle's windshield in order to pass a ween lane. The registration of an au­
thorized vehicle having an ezpay includes owner's personal data (such as
na:me, date ofbirth, driver lioonse number, bank account number and vehi­
cle registration number).

Each toll gate has a sensor that reads ezpay. The information read is stored
by the system and used to debit the respective accounts. When an author­
ized vehicle passes through a green lane, a ween light is turned on, and the
amount being debited is displayed. If an unauthorized vehicle passes
through it, a yellow light is turned on and a camera takes a photo of the
vehicle'slioonse plate.

8.3.2 Designing a Tall-gate system

Based on a set of general architectural style defined through graph gram­
mats, a visual architecting envi:romnent can be automatically generated. In
the architecting environment, users without any knowledge of graph
,grm:nmars can define software architectures by drawing graphs. The struc­
tural integrity of such ,graphs can be validated by a ,graph ,grm:nmar parser.
In the environment. users can design a system or sub-system by choosing
an appropriate style and customize components and counect0r8 inherited
from a vocabulary within the style.

A toll-gate system is made up of a database system and several gates. The
database stores customs' information, which can be updated and retrieved
upon requests coming from the gates. Such a communication model is im­
plemented as the Sub-systeml in Fig. 6.5(a) using a server-client style. The
node labeled DB inherited from the component type Server represents a
database. and nodes labeled Gale inherited from the type Client denote toll
gates. The node Dis represents a connector sending requests to the data­
base and dispatching replies to appropriate toll gates.

A toll gate needs to scan the identification ofan arriving vehicle. The sub­
s~ applies the event-based style to implement the interactions be­
tween toll gates and vehicles (The node Gate is a common component in
the sub-Systeml and sub~. and it is inherited from both the Client
type in the client-server style and the Object type in the event-based style).
In particular. the vertex named Arrive in the Car node is an event port in­
vocating the scanning operation denoted by the Scan vertex in the Gate
node.
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Gate

(b) The architecture ofa gate

Fig. 6.5. An architecture of the Toll.ga.te system

We can further elaborate the design ofthe toll gate using a pipe-filter style
as shown in Fig. 6.5(b). Three components constructing a gate are inher­
ited from the filter type, and are denoted by nodes Admin, Camera and
Light representing an administrator, a camera and a signal light re­
spectively. Directed edges in the Fig. 6.5(b) denote pipes connecting dif­
ferent filters.

(a) An architecture
violating the pipe­

filter style ) Parsing the arcl1itecture

Fig. 6.(). Checking an architecture
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Based on graph grammars specifying a set ofarchitectural styles, users can
implement sub·systems with an appropriate style and incrementally glue
sub-systems into a complete architecture. The stIuctu:ral integrity of each
sub-system can be verified through the parser. For example, Fig. 6.6(a)
shows an architecture violating the pipe·mtef style. which requires that at
most one pipe connects an output port to an input port between a pair of
filters. The violation can be detected by the ROO parser. If an UI.lfIlflI'lred
vertex in the right graph ofa production matches a vertex v in the redex of
a host graph, then all edges couuecting to v have to be completely inside
the redex. According to this above embedding rule, an isomorphic graph
(surrounded by a dotted rectangle in. Fig. 6.6(b» matching the right graph
of Production 3 in Fig. 6.2 is not a valid redex due to the dangling edge
(Rozenberg 1997) as shown in Fig. 6.6(b).

6.4. UML Class Diagram Verification

In this section, we first use an example to illustrate how to represent: a class
diagram using a ROO diagram. We then define a graph grammar for the
UML class diagram. A parser can verify sorue properties of the design. In
the next section, we show how this graph grammar can help visualizing
design pattern applications and compositions in their class diagrams.

8.4.1 Class Diagrams

Class diagram. one of the most popular diagrams in UML, visually models
the static structure ofa system in term ofclasses and relationships between
classes (Booch et al. 1999). In order to verify the stmcture of a class dia·
gram, we 1:l:1ms1ate the class diagram (Fig. 6.7(a» into a node~ format
(Fig. 6.7(b», on which the ROO parser operates.

In the class diagram, classes are represented by compartmentalized rectan·
gles. In anod~ diagram, a node labeled Closs denotes the first com·
partment contaiuiug the class name. A set ofnodes labeled Attrl represents
attributes in the second oomparttnent. Nodes are sequenced by linking two
adjacent attributes in the same order as displayed in the compartment, and
the sequence is attached to a class by linking the first: Atlri node with the
C1QSB node. Operations in the third compartment are processed in the same
fashion as attributes by replacing Attrl with Oper nodes.
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(a) A class diagram

(b) The corresponding ROO diagmlm

Fig. 6.7. A class diagram and its corresponding ROO diagram
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Asaociatio1lS denoted by straight or diagonal lines in UML CI:lITY informa­
tion about relationships between classes. In a node-edge diagram. a node
labeled Asao is used to symbolize an association. A line conneeting an
Aaao to a Claaa node holds the association. Associations may be named. In
order to indicate the direction in which the name should be read. the vertex
labeled R inside an Asao node is connected to the Claas node designated by
the verbal const:l:'l:mt, and the vertex labeled L to the other Cb::Jaa node. On
the other hand, if the order is unimportant. we ignore the difference be­
tween R and L. Aggregation and Compoaition. two special types of asso­
ciations, are translated in the same way as associations.

In UML, the generalizfltion specifies a hierarchical relationship between a
general description and a specific description. In the node-edge represenm.
non. a line, which links from the vertex labeled c in a Claas node to the
vertex labeledp in the other Clms node, designates the generalization rela­
tionship :from the former class to the latter. In other words. the vertex la­
beled c indicates the general class, and the vertex labeled p denotes the
specific class accordingly.

We introduce a new node to the node-edge representation, namely root,
without a counterpart in the class diagram. The root is connected to any
Clms node representing a class without a super-class. The introduction of
the root node is to facilitate the parser to verify the stmctu:re of a node­
edge diagram.

A graph granunar abstracts the essence of structures. It. however, is not
suitable to convey precise information visually. We store specific infurma,.
tion into attributes. For example, association names are recorded in attrih­
utes associated with Asao nodes. Those values of attributes can be re­
trieved and evaluated in the parsing process.

Fig. 6.1(a) illustrates a class diagram and Fig. 6.1(b) presents its c0rre­

sponding node-edge diagram recognizable by its ROO. The shaded texts in
Fig. 6.7(8) represent an extension to UML with pattern names, and the dot­
ted rectangles in Fig. 6.1(b) correspond to the extended UML (Dong and
Zhang 2(03). We will discuss the pattern aspects in Section 6.5.

A graph granunar can be viewed as 8 style that any valid graph should
bold, Le. any possible inter-connection between entities must be specified
in the granunar. Each production specifies the relationships between local
entities. Combining all the productions together. a ROO granunar defines
the way ofconstructing a valid class diagram through different entities rep­
resented by nodes with different types.
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Fig. 6.8. The graph grammar for class diagram



6.4. UML Class Diagram Verification 133

Fig. 6.8 presents the ROO defming class diagrams. Production 1 reduces
two attributes into one node, which is treated as one entity in later applica­
tions. Repetitive applications ofProduction 1 reduce attrlOutes of the same
class to one entity, which can be applied by Production 3 later. Productions
1 and 2 serve to reduce a sequence ofattributes and operations. Production
3 specifies the class structure by attaching sequences of operations and at­
tributes to a Clo8s node. Production 4 defines the constraints between~
sooiations. Production 5 specifies the template class, followed by the pro.
duction presenting the interface. Productions 7, 12 and 14 define
associations, and Productions 8 and 9 specify aggregation and composition
respectively. Productions 10 and specify generalization. Production 15
represents the initial state. The nodes and vertices in dotted rectangles de­
fine pattem-extended class diagrams, which will be explained in Section
6.5.

6.4.2 Automatic Verification

There are already some tools supporting the general syntactic checking on
class diagrams. H.owever, they are not capable ofperforming specific veri­
fication. For example, multi-inheritance may cause ambiguity, it is desir­
able to prohibit it when modeling software written in conventional pro.
gramming languages. Each production specifies a local structure. By
"gluing" separate structures together, repetitive applications of various
productions can generate a complete structure. A graph specifying a struc­
ture is invalid if it breaks at least one relationship specified in any produc­
tion. For example, Production 6 in Fig. 6.8 defines that one interface can
only attach to one class. If an inteJ:'face is designed to be related to more
than one class, a parser can indicate a violation ofProduction 6.

The following example illustrates how to verify inheritance relationships
between classes. In Fig. 6.8, Production 10 defines the scenario of single
inheritance, and Production 13 specifies that of multi-inheritance. Since
any valid relationship between components can be eventually derived from
a graph grammar, removing Productioo 13 implicitly denies multi­
inheritance. In the right graph of Productioo 10, the edge indicates an in­
heritance relationship between the classes. According to the marking
mechanism explained :in Chapter 2, the unmarked vertex p :in the bottom
class node representing a snb-class requires that any class can only inherit
from one class. On the other hand, the marked vertex c in the top class
node representing a snper-eJass defines that one super-class can have more
than one sub-class, which does not contradict with s:ingle inheritance. Ifthe
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multi-inheritance as illustrated in Fig. 6..9(a) occurs, the application of
Production 10 causes a dangling edge (Rozenberg 1997), which is not al­
lowed in the ROO formalism. Considering the scenario where one class
has more than one sub-c1asses, a successful application is shown in Fig.
6.9(b).

Fig. 6.9. Inheritance verification

6.5 Design Pattern Visualization

UML (Booch et aI. 1999) provides a set ofnotations to demonstrate differ­
ent aspects ofsoftware systems. However, it is stiU not expressive enough
for some particular problems, such as visualizing design pattern applica­
tions and compositions (Dong and Zhang 2003). In this section, we use the
ROO formalism to visualize design patterns in their class diagrams.

Design patterns (Gmmna et aI. 1995) document good solutions to recurring
problems in a particular context, and their compositions (Keller and
Schauer 1998) are usually modeled using UML. When a design pattern is
applied or composed with other patterns, the pattern-related information
may be lost because UML does not track this information. Thus, it is hard
for a designer to identifY a design pattern when it is applied or composed.
The benefits of design patterns are compromised because the designers
cannot communicate with each other in terms of the design patterns they
use when the design patterns are applied or composed. Several graphic no­
tations have been proposed to explicitly represent pattern-related informa­
tion in UML class diagrams (Dong and Zhang 2003). While aU these solu­
tions need to attach additional symbols and/or text, they aU suffer
scalability problem when the software design becomes very large. We pro­
pose a solution that can dynamically visualize pattern-related information
based on the ROO. As shown in Fig. 6.8, we introduce It new type of
nodes, called pattern, which denotes a specific pattern, and pattern-related
information is expressed by linking a pattern node with its associated class
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nodes. Fig. 6.7(b) presents the corresponding node-edge diagram by high­
lighting the newly introduced nodes and edges with dotted lines.

A syntactic analyzer can dynamically collect separate pieces of informa­
tion. and reconstruct them into an entity. In the process ofparsing, the se­
quence of applications ofProduction 17 in Fig. 6.8 collects all classes be­
longing to the same pattern together. For example, if the user olicks the
composite class in Fig. 6.7(a), the component class, content class and com­
posite class, which belong to the Composite pattern. are highlighted.
Therefore, there is no need to attach any additional information on the
original class diagrams.

6.6 Software Architecture transformation

The architectures of softwa.re systems are usually not fixed. With the
ohanges of requiremems and contexts, softwa.re architecture may be trans­
formed into a new configuration. Furthermore, a high-level softwa.re archi­
tecture needs to be refined into detailed architecture (Morieoni et aI. 1995)
in softwa.re development This transfoI1Illltion process can be tedions and
error-prone without tool support This section illustrates the automated
transformation of software architecture between different styles. Graph
rewriting provides a device for reusing existing products by performing a
transfoI1Illltion.

A softwa.re architecture style defined through a ROO ehameterizes some
oommon properties shared by a class of architectures. To satisfy new re­
quirements and reuse current designs, an architecture with one style needs
to evolve into another with a more appropriate style in the new contexts. In
general, softwa.re architecture transformation proceeds in two steps: a) ver­
ify the style of an architeelure; b) transform an architecture from one style
to another style.

Assume that a system is originally implemented in a client-server style,
only consisting ofone server storing all data. In order to retrieve daIa, cli­
ents must send requests to and. receive responds from the server. This
communication pattern is abstracted into a graph grammar shown in Fig.
6.10(a), and an architecture with that style is illustrated in Fig. 6.1O(b).

With the increase of the amount of data and communication, one server
may not be able to bear olients' requests. On possible solution is to distrib­
ute data to diffi:lrent servers. Therefore, we need to transform the current
style to a more advanced one. We divide servers into control server and
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data server. A sysJem can only contain one control server, but may have
several data servers. A client sends requests to the control server, which
forwards them to an appropriate data server. TIwn, the data server directly
replies to the client. Such a communication pattern is de·fined in Fig.
6.10(c), which is achieved through the transformation rule in Fig. 6.10(d).

I...........;.J' .......~C
(0) An evolved

architecture
(d) Transfonnation rule

Fig. 6.10. Architectural transformation

We go through another example to illustrate the architecture transforma­
tion. A simple pipe and filter system witllout feedback is shown in Fig.
6.11(a), where a circle represents a task and a directed edge indicates a
stream between tasks. Correspondingly, a node labeled StrlTw,~k sin1ulates
a stream/task in the node-edge representation. An edge conn.ecting the RIL
vertex in a Str node to the JlO vertex in a Tas~k node expresses an incom­
ing/outgoing stream. Fig. 6.1 l(c) iUustrates the node-edge representation
for the system shown in Fig. 6.11(a). Productions defll1ed in Fig. 6.1 1(b)
abstract the communication pattern in pipe and filter systems without feed­
back. By allowing an edge between Task nodes, which designates a
feedback between tasks, the transformation rule given in Fig. 6.11(d) trans­
forms a system wi.thout a feedback to one with feedback. Fig. 6.1 l(e),
where the dotted edges represent feedbacks, iUustrates the system
with feedback after we apply the transformation rule to the exampl.e in
Fig. 6.1 1(a).
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: I$T_ij :=8--@TFk@J
!B~;~~;k~I _

I ~ ~I 0:= Tallk
(a) Pipe and filter system:

without feedback : (b) ROG definition ofpipe and filter system

----------------------~--------------------

(c) The node-edge representation fur the example system

(e) Pipe and filter system with
ieedback

Fig. 6.U. Pipe and filter system

6.7 Summary

Based on a grapb gmmmar formalism, tbis chapter bas presented an ap­
proacb for software architecture definition, verification and transformation.
Through tbis approacb, UML notations can be easily translated to the
graphical notations adopted by the ROO formalism. The oonformi:ty malres
the approach consistent with current design tools. In general, the approach
can provide the fonowing benefits:

1. Consistent: It expresses software architectures in terms of ''box. and
line" drawings (Allen and Garlan 1994), which meets the common
practice ofsoftware engineers (Metayer 1998).

2. Sealable: The underlying grapb grammar formalism is applicable to
various classes of graphs. It is easy to accommodate new compo-
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oonts by extending the graph schema and revising corresponding
grammar rules, and thus support software reuse.

3. Automatic: Automatically generated by a visual language generator
like VisPro (see Chapter 8), a transformation tool is capable of syn~
tactic checking of software architectures. Automatic transformation
from 000 architecture style to another assists software engineers to
reuse existing products in the new application contexts.

Using the attributes in the RGG, we can express semantic information of
software architecture and design. In addition to syntactic checking and
transformation, semantic analysis and transformation need to be investi~

gated.

The grammatical approach is promising in providing an intuitive yet for~

mal method to the specification of software architectures. Graph grammars
are used to defme architectural styles, which impose constraints on the in~

teraction among components. With. the well-established theoretical founda­
tion, the grammatical approach can automatically validate the struotural in~

tegrity and reveal the hierarchy of a user-defined software architecture
through parsing.

The graph transformation tool can be considered an authoring language
generator, which can generate a specific design environment whenever
needed. A software engineer without any knowledge of graph grammars
will be able to use the generated environment to design software architeo­
tures by drawing graphical stmctures. Syntax check can be automatically
performed within the environment.

6.8 Related Work

Many ADLs, such as Wright (Allen and GaIlan 1997) and Rapide (Luck­
ham et al. 1995), have been proposed to model and analyze software archi­
tectures. Based on formal models, those languages allow users to defme
software architectures without ambiguity, and thus are suitable for au~
matic reasoning on arohiteotures. There is, however, a mismatch between
the abstraction level at which users usually model the software architeo­
tures and the abstraction level at whioh users should work with. these lan­
guages (Barest et al. 2003). In order to model software architectures using
those languages in their onrrent forms, users need. expertise with a solid
technique baokground.



6.8 Related Work 139

With the met8-tool capability, the above approach can overcome the pr0b­
lem by automatically generating a style-specific design environment.
1'ben. users without any graph grammar knowledge can directly specify
and manipulate software architectures in terms of box-and-line drawings.
Based on well~blished theoretical foundations, a graph transformation
engine underlying the environment can verify the structure ofuser-de:fined
architectures. Therefore, the graph grammar approach is visual yet formal.

The Unified Modeling Language (UML) (Booch et al 1999) provides a
family of design notations to model various aspects of systems. Being a
general purpose modeling language, the UML has also been applied to de­
fining software architectures. Medvidovic et. al. (2002) systematically pre­
sents two strategies to model software architectures in the UML. Focusing
on the usability ofconcepts, GarIan et. aI. (2002) proposes several alterna­
tives to map concepts from ADLs to the UML. Both works exhaustively
discuss the strength and weakness of each metb:od Emphasizing on the
analysis and validation of designed models, Baresi et. aI. (2003) uses the
UML notations to specify the static aspect of stmctural styles paired with
graph transformation for modeling dynamic reconfignration. Selonen and
Xu (2003) apply UML profiles to software architecture design process and
software architecture description. Such profiles, called architechtral pr0­

files, define the stl'l:mtnral and behavioral constraints and rules ofthe archi­
tecture under design, and are used to drive, check and automate the soft­
ware architecture design process and the creation ofall architectural views.

In general, class diagrams provide a declarative approach to defining in­
stances of an architectural style. On the other hand, the Reserved Graph
Grammar proposes a grammatical approach to specifying architectures in a
eo:nstructive and incremental fashion. Though the declarative approach is
easier to understand, the const:rnctive and incremental method is more suit­
able for analysis. Furthermore, parsing an architecture can reveal the hier­
archical structure ofthe architecture.

Some researchers apply the typed graph approach to define architectural
styles. For example, Wermelinger and Fiadeiro (2002) use typed graphs to
specify all possible connections between components. Briefly, a typed
graph <0, 1> is a graph 0 equipped with a morphism t: G-TO, where TG
is a fixed graph, i.e. the type graph (Corradini et al. 1996). The typed graph
approach also leads to a declarative fashion as the UML. We argue that
graph grammars are more expressive in specifying architectural styles than
typed graphs by associating attributes to nodes.

Formalizing graphs through set theories, Dean and Cordy (1995) apply
the diagrammatic syntax to express software architectures, and use it for
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pattern matching. Their work focuses on exploiting the composition of
software architectures. Taentzer et. oJ. (1998) uses the distributed graph
transformation to specify dynamic changes in distributed systems.. The
changes are organized in Ii two~level hierarchy. One is related to the
change in Ii local node and the other to the structure of the distributed sys~

tem itself. This work emphasizes on modeling dynamic changes of distri~
uted systems rather than specifieations ofstructural composition.

Metayer (1998) presents a formalism for the definition of software archi~

tectures in terms ofgraphs. Dynamic evolution is defmed independently by
a coordinator. Metayer's approach only allows a single node to be replaced
with a sn~graph. and thus is limited to those graphs, which can be speci~

fied by context*free graph grannnars. On the other hand, the approach p~
sented in this chapter is more expressive in specifying software architec~

tures by allowing arbitrary graphs in both left and right graphs of a
production. Furthermore, the methodology is supported by a set of tools.
Using the Reserved graph grammar as the underlying formalism, a visual
language generator ean automatically generate an. application-specific de­
sign environment, as shown in Chapter 8. The environment is able to ver­
ify the structural properties ofsoftware architectures in terms ofgraphs.

Radermacher (1999) discussed. graph transformation tools supporting the
construction of an application conforming to a design pattern, which is
specified through graph queries and graph rewriting rules. A prototype can
be generated by the PROORES environment (SchUrr et al. 1999). Since the
presented approach conforms to UML, it has a broader acceptance and ap*
plieation scope than the above tools.

Based. on the theoretic foundation of term rewriting systems, Inverardi and
Wolf (1995) apply the Chemical Abstract Machine (CHAM) (Berry and
Boudol 19(2) model to the architectural description and analysis. Briefly,
software systems are viewed as chemicals whose reactious are controlled
by explicitly stated rules. Wermelinger (1998) further proposes two
CHAMs, i.e. the creation CHAM and the evolution CHAM, to defme the
architectural style and the reconfiguration respectively.

Karsai et. al. (2003) propose the Model~Integrated Computing (MIC) to
address essential needs ofembedded. software development. The MIC uses
domain~specificmodeling languages, which are tailored. to the needs of a
particular domain, to represent static and dynamic properties of a system.
Similar to the meta~tool eapability of our approach, the MIC supports to
program a m~programmable generic modeling environment into a do~

main~specific environment, which only allows the creation of models
complying with the abstract syntax of a modeling language. Instead of
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using the UML class diagram as the meta-model to define the abstmct syn­
tax of a domtUn-specific modeling language. we apply a rule-based pam­
digm, a ROO grammar. to define a language. Supported by a futma1
basis of graph gmmmars. the mle-based specifioation is more suitable fur
:reasoning and verification.

The approach described in this chapter is also inspired by the development
of the Aesop system, the effort of adapting the principles and technology
of generic software development environment to provide style-specific ar­
chitectural support (Gadan et al. 1994). The Aesop system dermes a style­
specific voeabulaty ofdesign elements by specifying snbtypes ofthe seven
basic architeetnm1 classes. Then, designers have to over-load the methods
of these subtypes to support stylistic constraints. Taking the advantage of
conciseness and intuitiveness of graph transformation, our approach sup­
ports a high level specification ofarchitectural styles through graph gram-
mars.



Chapter 7 Visual Web Engineering

7.1 Introduction

The development of Web sites with complex interoonneetion& of large
number of Web pages so far has been largely an ad boc process. There has
been no commonly aecepted methodology. which supports ease of design.
navigation. and maintenance of sophisticated Web sites. As the number of
Web sites is inereasing in an exponential order. with the huge information
space provided by the Web. users become increasingly confused when
they navigate a growing nnmber of Web sites; finding the right informa­
tion also takes longer time. The problems are partially due to the WlStruc­
tured nature ofthe current organization ofWeb sites. For example, in most
of the existing Web browsers. the process ofjumping from one location to
another could easily confuse the user. The main reason for this is that the
user does not know the current context of space with. respect to the overall
information space.

Attempts have been made to develop tools and facilities to snpport Web
site constnlCtion, although most of these tools are designed only for one
stage ofWeb design. navigation. and maintenance.

Designing a good Web page is considerably easier nowadays. There are
many guidelines describing in details the so-called good design of Web
pages (Conger and Mason 1998). Siegel (1997) classifies three generations
of sites mnging from default backgrounds with wall-to-wall text used in
the first generation th:r:ongh the second generation ofvisual treatments such
as menus and Web maps. The third generation ofWeb sites allows users to
pursue paths designed for their needs and interests. We are now in the third
generation and moving towards a more personalized multimedia capable
Web. Hinton (1998) fu:rther discusses bow an organizati.on could maintain
and design its Web IeSOnrees with such paths. More and more organiza­
tions are embracing the idea ofpersonalized Web site for different types of
users (Maa:rek and Shaul 1997). Personalized paths desigoed for different
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individuals would enable an organization to tailor its priori~ and services
for the individuals according to their values to the organization.

A wri~ oftools, including navigational tools such as browsers and lenses
(Huang et al. 1998a; Muchaluat et al. 1998), and history lists (Frecon and
Smith 1998), have been developed to assist users to overcome the problem
of fmding information in the unstruetured. Web space. WebOFDAV
(Huang et at 1998a) also tries to help the user to visually navigate the Web
by displaying a sequence of small visual frames corresponding to user's
focuses of attention. Yet, these approaches do not solve the navigation
problems through st:ruetured Web design since Web design and navigation
are not integrated and problems in each domain are tackled separately.

In order to improve the design and navigation of WWW, a weU-designed
Web stmcture is desirable. Better tools are needed that enforce stmcture in
the design phase, while supporting fuUy integrated m.aintenance and navi­
gation capabilities. A complicated Web system can be made more strue­
tured and navigated more easily through graphical visnalization and
graphical interactions. More importantly, maintaining a uniform view
throughout the design, navigation, and maintenance cycle can reduce con­
siderable development effort and enhance the navigation efficiency. The
goal of this chapter is to propose an integrated view throughout the Web
development cycle. The J:ml.ior advantages of this approach are the follow­
ing:

• A visual approach to constmcting and navigating Web sites is easier
to comprehend than the textual form. A novice user without any pro­
gramming experience would fmd the visual approach intuitive if the
visual representation could reflect one's mental image of a Web
structure.

• Automatically generated by a visual language generator, the graphical
Web construction and navigation tool can be rapidly prototyped and
enhanced to meet the end-user's needs. The generated tool is a syn­
tax-directed visual editor that is capable of syntactic checking of any
construeted Web graph. The Web site design and navigation share the
same graph formalism so that the user's mental map is preserved.

• A Web site can be maintained using a site visualization tool that
shows the site in the same graphical format as in the design stage.
The full integration of the design tool with a Web site visualization
tool also allows a user to construet new Web sites through reverse
engineering based on some existing site structures and contents.



7.2 The Human-Web Interface

This section proposes a uniform view of the design, maintenance. and
navigation ofthe Web. which we call the HUI'nQJf- Web Inter/ace (HWI).

To compare HWI with traditional HCI (human-computer interface). we
consider the following three aspects: the device for which the interface is
suitable and designed. main functionality of the interface, and the target of
the communication that the interface facilitates.

• Device: A HWI could be installed not only on a compoter, but also on
a PDA (portable digital appliance), a mobile phone, or a television
set, In the latter case, the HWI needs no Web design function and
thus would not be equipped with a graph editor and Web site genera­
tion engine (as described later in this chapter). The display could also
be much more simplified. Taking a PDA for example, the display
may only include clickable texts and running texts for navigation and
browsing, possibly with a voice interface as in WebViews (Freire et
al,2(01),

• Funetionality: The major role of a HWI is to act as a window to the
world while a HCI could just be for a standalone computer. There­
fore, the main objective of a HWl is to facilitate information gather­
ing and retrieval while that of a HCI is to facilitate operations on a
computer.

• Commmtit'ation target: Related to the above difference, the c0m­
munication target of a HWI is human while that of a HCI is machine,
The human-to-human communication throngh HWIs may be direct,
such as in a Web-based net-meeting, and indirect as in nsual Web
browsing. To support indirect human-to-human commnnications in
various professional domains, we need commonly understandable and
agreed communication protocols, The XML standard (W3C 2004a)
has been motivated precisely for this reason.

As illustrated in Fig, 7.1(a). in the traditional human-computer interaction.
the human user's intention is materialized through the HCI and inter­
p:retedIexecuted by the computer, which in tum outputs results through the
HCI to be interpreted by the user. Fig. 7.1(h) shows the human-to-hnman
communication model, realized indirectly through human-Web interfaces,
which communicate to the Web server via the Internet A full human-to­
human communication path is described as: a human user's intention can
be materialized on a HM, which is then interpreted by the Web server ac­
cording to the predefined HWI syntax and semantics (i.e, Web graph
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gl1l1nmar discussed later); another HWI on the other end materializes and
presents the user's intention according to the Web server, and the: other
human user interprets and understands what is presented on the HWI.

~ Mallill'iali;r;ed·by

- - - .. lnlerpreted"by

....... Cooolllumcatlon

(a) Humoo-compnter interlldian model (h) HUIl'lOO-Web inl:l.'lraCtion model

Fig. 7.J. Human..fo..computer communication in HCI and human-to-buman com­
munication in. HWls

Both HCI and HWI aim at enhancing the usability and thus the user's pr0­

ductivity. They may therefore be developed based on similar conceptual
architectures. The Model-View-ConttoUer paradigm, or MVC for short.
has been successfully used to build user interfaces in Smalltalk (Krasner
and Pope 1988). As one of the earliest successful object-oriented pro­
gralnlnIDg languages, Snmlltalk. supports construction of new interactive
systems based on existing ones. MVC consists of three main objects as
shown in Fig. '].2: Model, View and Controller. Model represents the ap­
plication semantics, and its screen presentation is managed by View. Con­
troller defmes the way in which the user-interface reacts to user inputs.

Based on. the MVC paradigm, we propose a HWI. framework. as shown in
Fig. 7.3. where "Graph Editor and Navigator" corresponds to Input in
MVC, "Web Browser" corresponds to DI:Vplay, "Filters" and "Display
Markup" correspond to View, "Customizer" and "HWI Engine" corre­
spond to Controller. and "Web Graph Gnnnmar" and "XML Database"
correspond to Model. The framework. consists of the support for three rna·
jor activities: Web site design. navigation and browsing. and maintenance
and updating. The front-end of the user interface consists of a Graph
Editor and Navigator (GEN) for Web site construction and navigation that
is capable of automatic graph layout, and a Web browser that could be
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Netseape or Internet Explorer. This combined front-end forma the human­
web interface (HWI).

Fig. 7:1.. The Model-View-eontroDer paradigm

The Web designer uses the Graph Editor of GEN to design and construet
Web sites as graphs to be transformed and processed by the HWI Engine.
The Engine performs grammatical check of the construeted graphs accord­
ing to the predefmed Web graph grammar, transforms the validated graphs
into either XML documents or inter-related HTML files, and generates an
internal data structure for debugging and maintenance purposes. If the ge­
neric document structure is desirable, XML document structures win be
generated and stored in the XML database. The HWI engine is able to
transform from one XML to another, or :from an XML description to an
HTML display format according to the predefined transformation grammar
(Zhang et al. 2001c).

Fig. 7.3. The HWl framework

The HWIT framework supports several modes of displaying, including
Level view, Domain view, Category view, Pattern view, and Constraint
view. These views are implemented by differentfllters that are also shown
in Fig. 7.3. These views and associated filters are described in Section
7.5.4. Filtering rules can be defined on various structures, including graph
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structure, Web context, and doculuent structure (Huang et al. 1998b).
Other conditions may be defined to facilitate more specialized filters. Web
designers can design or customize their own filters to suit their specific
application purposes. The Customizer alJows a Web designer or webmaster
to defme other desired filtering criteria. integrity conditions suited for
maintenance. and syntax...wre:cted operations associated with the Web
graph grammar. For example, the user may define an integrity condition
through the Customizer that no page should belong to more than one
group. Web designers may also customize their designs, such as the use of
graphical notations, the way in which the site will be navigated, etc, to suit
the needs ofdomain-specific applications.

7.3 Using the HWI Tool

The HWI framework provides a Web designer with a uniform graphical
view for the effective design and maintenance of Web sites. and anows us­
ers to navigate the Web site graphically by direct manipulation and infor­
mation filtering as desired The Web designer designs and generates a Web
site by drawing the Web graph that conceptually represents the site struc­
ture. Navigation and maintenance of Web sites are performed on the same
Web graph by the user.

During design or navigation. the user can click on any graph node to enter
direetly into the page symbolized by the node without going through an
the intermediate pages. This direct access method via a Web graph is much
more efficient than linear access method in conventional browsers. The
grammatical and structural organization of a Web site anows various (sys­
tem or user-defined) integrity conditions for the site to be cbecked and any
violation or inconsistency to be reported in a systematic fashion. For ex­
muple, any Web pages that are orpbaned by the deletion of some other
pages should be detected.

We have designed an experimental tool, called HWIT (Human-Web Inter­
face Tool), that realizes the above HWI functionality through visual Web
programming and Web visualization. A designer or a user would be able to
view any Web site from different angles, using HWlT's filtering capabili.
ties, in a structured and personalized manner. HWIT also accepts filters
that are defined and specified by users using the Customizer. The tool not
only allows the user to easily navigate and explore the Web, but also
assists the designer to design and maintain better-structured Web sites.
Fig. 7.4 depicts a snapshot of the HWI when navigating Kang Zhang's re-
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search home page on the: Internet Explorer (IE) by a simple click on the:
"research" node in the: graph on the: navigator. The Web page shown on the:
IE on the: right-hand side represents the: "research" page in the: navigation
window on the left-hand side. HWIT's "Preference" dialog allows the user
to choose a prefetred navigational browser from varioU& options.

Vi.mil Pro9l'iunmingand
SoftwareViSU8Ii&8tic$

Fig. 1.4. Navigation on a Web graph in HWIT

7.4 Graphical Programming for Web Design

Visual structures and relationships are much easier to reason about than
similar linguistically described structures. This is why designs in many ap­
plication domains have been conducted on graphWal representations. Us­
ing visual programming techniques to graphically design Web sites and
Web pages will obviously enable more visual artists and other non­
computing professionals to develop their own Web sites easily. The main
philosophy behind the: HWI :framework is its consistent visual approach to
Web design. navigation. and maintenance. This section introduces the eon­
cept of Web graphs and their notations. and describes the support for
multi-versioning and reverse Web engineering through graph visualization.
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7.4.1 Web Graphs and Design Notations

A graph G (N. E) consists of a finite set N whose members are called
node., and a finite set E whose members are called edges. An edge is an
ordered pair of nodes in N. A node of a graph GI can itself be another
graph G2. whicll is called a sub~graph of Gl. TIle properties of a graph
may be inherited by its sub-graphs.. We regard the organization of a Web
site of any size as a graph. known as Web grQph. A node in a Web graph
represents iii. Web page, and an edge represents a link from olle page to an­
other. The World Wide Web is certainly the largest Web graph that is ex­
panding all the time. For scalability and cOllvenience ofdesign and naviga­
tion, we define a special class of nodes, called group. A group represents a
set of pages that are connected to a common parent page, and share the
same set ofattributes.

The distance between a pair of nodes, node A and node B, is defined as the
number of intermediate nodes along the shortest path between A and B
(including B). A sub-graph of graph G consisting ofa node A and all such
nodes in G that have a distance ofN or shorter from A is called A 's level...N
sub-graph qfG. or simply A '$ level-N sub-grQph.

A graph class provides the general common properties that dictate whether
certain operations are applicable to the corresponding graph objects. A
Web graph can be constructed using a combination of tools: a graphical
editor for const:ructing a Web graph at the high level and a Web page tool
for constructing Web pages at the lower level. This is demonstrated in Fig.
7.5. that captures a snapshot during the design ofthe "CS5330" home page
using the Netscape Composer (launched from the "CS5330" node within
the HWlT Graph Editor). The graphical editor supports two-dimensional
construction ofWeb graphs with direct manipulation.

HWIT uses a small number of simple notations, as shown on the left hand
side of the screen in Fig. 7.4 and Fig. 7.5, to design and visualize the com­
ponents ofa Web graph.

The rectangle denotes a Node that represents a Web page. The label is
used to identify the node and the page.

The round-comered rectangle denotes a GrouP. representing a group of
Web pages that are combined together either due to their commonality or
for the brevity ofviewing. It is like a Web template or class, which can be
used to generate similarly structured-pages. A Group also has a label that
identifies a specific class of pages. This notation also enforces the consis­
tency in the pages belonging to one Group.
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The thin arrow denotes an Edge that represents a Web hypertink This is
the most common link seen in Web pages.

Fig. 1.5. HWlT Graph Editor and its oollIleCOon to a Web page editor

The thick arrow is called a Gedge. short fOr Group Edge, which :repre­
sents an edge coming out ofor entering a Group. The difference between
an Edge and a Gedge is that a Gedge connects to a Group and thus re­
fers to all the Nodes belonging to the Group (some kind ofinheritance).
For example. if there is a Gedge connecting a Group A to a Node D and
Node B is a member of A. then B is also connected to D. More impor­
tantly. the Nodes connected by Gedges to a Group share a common set
of characteristics and attributes. This is useful in generating consistent
look-and-feel pages.

The broken-line arrow (not shown in the:figures) is ealled a Hedge, short
fOr Hidden Edge. It may be defined as either a connection between pages
of different domains, or 8S a connection between a collapsed node and its
neighboring node after a filtering effect When generated automatically by
HWIT a Hedge indicates the existence of a connection (in form ofhyper­
link) between collapsed nodes. The designer may use Hedge at the desigo
stage. In this case. It Hedge denotes either an Edge or a Gedge between
two nodes and the designer has not yet made a decision in an early stage of
desigo.
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Each constructed Web graph is syntactically verified agamst the Web
graph grammar that is defined according to the reserved graph grammar
(ROO) defined for Web graphs.

7.4.2 Graph Operations

At the design level. the graph-oriented operations for editing. navigation,
and maintenance are categorized into the following groups:

• Graph editing: this category is for the construction and editing of a
Web graph, whose nodes are associated with Web pages or are lower
level Web graphs. i.e. sub-graphs;

• Sub-graph generation:, these operations derive sub-graphs according
to some classification or filtering criteria. Suo.graphs are easier to
navigate and maintain than a full graph. Categorizing suo.graphs re­
moves unrelated information in the display and during processing.
This also allows the user to record and replay a series of browsing
steps. expressed in a sub-graph.

• Query: these operations provide information about the graph. such as
the number of nodes in a graph. whether an edge exists between two
n<>de8. and how a node is reached from anotber node. Such informa­
tion is useful for the Web design and maintenance.

• Time and version control: graphs may change over a period and may
reach a particular state at a predetermined time. For example. a Web
designer may set a time when a page or a sub-graph should be acti­
vated or disabled. A graph from an early stale may be partially reused
and incrementally updated for a later graph. Graph slates are repre­
sented through versioning.

• Viewing: these operation.s include applying various filters in selecting
certain categories of sub-Webs, graph updating due to a change of
any graph element, and collapsing of a sub-graph into a graph node
for reducing clustering. To support scalable visualization. HWIT al­
lows a number of nodes to be collapsed into a single node, which is
called a super-not:le. graphically, it is represented as a Group. This
operation achieves the zoom-in effect. A super-node can be expanded
to allow its contents to be viewed or modified. The expansion
achieves zoom-out. The zoom-in and zoom-out effects help designers
to view their desigus easily. Collapsing and expanding could be per­
formed in various levels or depths.
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7.4.3 Web Graph Gramma,

The Web graph gmmmar used in HWIT is based on the reBerved graph.
gramJ'l1l:lJ"8 (ROO) presented in Chapter 2. The main advantages of wing
the ROO formalism include its expressiveness and efficiency in parsing.

In HWlT. the Web graph grammar illustrated in Fig. 7.6 is used to parse
and interpret a created graph and perfOIm :related graph operations. The
correotness of a partially or fully eonstmcted Web graph is ohecked 30­

eording to the Web graph grammar. HWlT maintains referential integrity
on the design to avoid broken links on the actual pages.

Fig. 7"'. Web graph grammar

As shown in Fig. 7.6. the Web graph grammar is simple and has seven
production mIes. Parsing a Web graph takes two phases: syntax parsing
and semantics parsing. Syntax. parsing is to check whether the graph is
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valid. If a graph is eventually transformed into an initial graph (te. A) by
the graph rewriting rules, it is valid. Semantics parsing is to produce a re­
sult or perform actions by executing a graph. The result is meaningful only
when the graph is valid. The syntax and semantics are specified in the
same set ofgraph rewriting rules. Th.e graph transformation process checks
the syntax of the graph and translates it into the textual specification in
XML or HTML and intemal formats at the same time.

Associated with each rewriting rule, an action code performs a syntax­
directed computation over the attributes of a redex when the production is
applied. For example, a simple action included in any production of the
Web grammar can be written as follows:

actlon(AAMGmph g){
Attributes attribut98::; g.getAttributes();
(Properly) attributes(2).get("URL',"

J
The action takes a graph g as its input. g has a matching redex isomorphic
to the right graph of the production. To facilitate the access ofattributes in
the redex, an array referring to required attributes is first produced through
the method g.getAttribtAesO. The array member attribut9s(2), for exam­
ple, refers to the attributes of the node which has AJef= 2. The URL of
this node is obtained so that the related. page can be displayed.

7.4.4 Information Filtering

The HWI framework supports several modes of displaying, iucluding
Level view, Domain view, Category view, Pattern view, and Constraint
view. The Level view allows the user to choose the level of Web page
pointers to display, Le. a given level of linked pages in the Web graph rela­
tive to a given node. The Domain view shows the pages ofa given appli­
cation domain. If th.e Web designer bas elassified all the pages according
to some application criteria, the user can choose Category view to see a
given class of pages. The Pattern view allows the viewer to see some
common patterns in a Web graph. Finally, the Constraint view shows aU
the pages that satisfy a given set ofconstraints.

The views described above are implemented by different filters that are de­
scribed below~ Web designers can design or customize their own filters to
suit their specific application purposes.
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• Level WteI'. If the user selects a partic::ular node. say node A in a Web
graph. and specifies a level N. the system will display A's level-N
sub-graph. The Level ftlter makes use of hierarcbical nature of the
Web information space to set the levels. Only information of the
given level will be shown on the view. "Collapse" and "expand" op­
erations use the level filter to decide whether a particular page will be
shown.

• Domain WteI'. The domain-related pages can be displayed if the user
provides several keywords of an application domain.

• Category WteI'. The Category filter allows user to view the Web
pages belonging tD certain categories. The user could choose catego­
ries tD be viewed from a list of categories available. This list of cate­
gories is gathered when the user adds new Web pages into the Web
graph and categorizes them by ftlling the property form for each
page.

• Pattern WteI'. Groups of Web pages with certain patterns can be fil­
tered and shown in the view. A typical use of this filter is when the
user attempts to remove redundant pages by comparing similar sub­
graph patterns. The filter accepts a sub-graph (perbaps generated us-­
ing another ftlter) from the user and finds the matching patterns to
display. The matching process can be slow for a large Web graph.

• CoDstmiRt filter. Web pages that satisfy certain constraints can be
displayed in the view. Examples of constraints are file size. file at­
tributes. file's creation dates. etc. For instance. the user may wish tD
view all the pages under a certain file size.

Filtering rules can be defmed on various structures. including graph struc­
ture. Web context, and document structure. Other conditions may be de­
fined to facilitate more specialized f:Uteri. Web designers can design or
customize their own filters to suit their specific application purposes.

7.4.5 Support for Multi·version Web Sites

Web designers are under increasing pressure tD produce updated Web
sites. The conventional approach tD creating and modifying a Web site is
tD create every single page and make changes on the copy of the source
code of the page. Problems arise when the main frames of the pages are
almost the same while changes are needed only for part of the original
documents. To allow efficient creation and modification of changing Web
sites, the idea of multi-version Web sites has been proposed (Wadge and
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Yildirim 1997).. In a multi-version Web site, a generic source page acts as
a template for other documents in the same site. Th.e generic source page
represents the common part of other documents and is used as the index
page of the site. Eacll of the other documents can be considered a version
of the site. Every request from a client is associated with a version label
that is interpreted by a COlor Java Serviet program on the Web server to
point to an appropriate version ofthe document. TIus version of document
is then retrieved and loaded into the template ofthe generic source page to
be displayed. MuIti-versioning is also useful when different languages or
different representations are needed on a single Web site.

Fig. 7.7 depicts a possible organization of a multi-version stock market
site. in which each stock market source page (a version such as that of
"New York") share a generic information page. In this case. different
graph objects carry different meanings under different contexts, the seman­
tics of a graph operation will depend on the context defined by the Web
designer. Graph operations can be implemented according to their con­
texts but all provide the same interface to the designer.

HWIT supports the concept of associative queries for multi-version Web
sites. The basic idea is that all the objects in a generic source page are
categorized into three hierarchical classes: root, node and leaf, and they
form a hierarchical graph. HWIT uses a data structure called virtual ver­
sion tables (VVTs) to organize different versions of a document and facili­
tate the retrieval ofappropriate documents.

Fig, 7.7, A multi-version Web site
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The title page is considered the root class, Node classes include HREF
J.iDks. includes. headings. and other node classes. Leaf classes are disjoint
objects such as graphic files and audio files, A version label is assigned as
an attribute to the root class and objects in each leafclass when submitting
a :request for a specific version. A hierarchically 8trI1Ctnred graph is created
when the version document is generated. Information retrieval is achieved
by querying the graph of the version through VVTs, More details of the
associative query approach can be fuund in Zhang and Zhang (2000),

7.5 Web Reuse Through Reverse Engineering

One ofthe major advantages ofintegrating Web design and navigation fea­
tnres in the HW1T framework is the capability of reu8ing existing Web
graphs of pre-<leveloped Web sites for the generation of new Web sites.
Web graphs generated in HWIT provide not only the visualization fur
viewing and navigation of Web sites, but also the graphical user interface
fur direct manipulation of Web data, attributes and relational 8trI1Ctnres.
We call thepr~ the generation of new Web sites through the direct
visualization and editing ofexisting Web graphs,~e Web engineering.

7.5.1 Reverse Engineering Approach

In HWIT, all Web graphs are commonly presented as node-like diagrams.
To reduce the life cycle of Web engineering. HWIT provides facilities for
reverse engineering of Web sites. We can use the HWIT editing environ­
ment to quickly migrate the Web graph of an old Web site into the Web
graph ofa new Web site, We can then visualize the new Web graph on a
graphical user mterface 10 create (edit) new Web data (sites),

A Web designer could use HWIT to display an existing Web graph as the
primitive Web graph of a new Web site, and modify the attributes and
structures of this Web graph through direct visual editing. and then create
the new site as well as the graph-migration by writing back (output) the
modified Web graph moo a new Web site. We adapt the techniques of
Huang et at (l998b) fur reverse Web engineering. Fig, 7.8 is a transition
diagram showing three phases of the reverse Web engineering process.
The process allows any levels of details in a Web site in1:i:astructur 10 be
preserved and effectively reused.
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We use an incremental visualization technique to navigate the entire Web
site as we assume that the corresponding Web graph of the Web site is
very large that is unable to be displayed entirely in any type of the avail­
able screen with a limited number of pixies. The navigation of the Web
graph uses a sequence of logical display frames. These frames maintain
the user's orientation for Web exploration. This method also reduces the
cognitive effort required to recognize the change of views. This is done by
connecting successive displays in the logical display frame of the Web
graph and by smoothly swapping the displays via animation as shown in
Fig. 1.9.

The underlying strnctnre of the hypermedia system on the Web can be re­
garded as a huge digraph with nodes and edges representing URLs (or an­
chors) and links respectively. For the purpose of visualization and back­
tracking during navigationt it is more convenient to make no distinction
between the directions of hyperlinks. We will treat a Web graph as undi­
rected. Furthermore, we assume that the Web graph G we dealing with is a
huge, connec~ undirected graph.

To display a given Web site as a graph, we need an effective and efficient
graph layout algorithm. Among many graph drawing algorithms, force­
directed algorithms (Di Battista et a1. 1999; Eades 1984; Huang et a!.
1998b) are very popular; they are easy to understand, and the results of
layouts can be good. HWIT uses a force~irected algorithm to draw exist­
ing Web graphs fur visualization. A force-directed algorithm views a
graph as a system of bodies with forces acting between the bodies. The
bodies are represented nodes in the graph, and the forces are relationships
between the nodes in a graph and determine the geometrical positions of
the nodes. A force-directed algorithm aims to compute a position for each
body such that the sum of the forces applied on each body is locally mini­
mized.
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J

CF3 ~i;~
Fig. 7.8. A transition diagram showing three pbases ofWeb reverse engineering

Fig. 7.'1. An exploratory visualimtion model

One of~ most popular furce..directed algor:i:thms is called the spring al­
gorithm (Eades 1984). The original spring model uses a combination of
spring and gravitational forces. The spring force is based on Hooke's law
springs. and~ strength of~ springs varies. The gravitational force fol­
lows the Newton's universal law of gravitation" except that attraction is re­
placed by repulsion. Edges are modeled as springs. and nodes are particles
that repel each~. This is illustrated in Fig. 7.10.
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Fig. 7.10. Spring model represents nodes as steel rings and edges as steel
springs, and then finds a drawing with a minimal energy

7.5.2 Web Visualization Algorithm

A Web graph being visualized is treated as a rooted tree, which consists of
a set of focus rwt:les, each surrounded by the nodes linked to it. A focus
node is usnally the center (or previous center) of the user's attention when
navigating and viewing the Web graph.

Suppose G--(Vt E) is a connected Web graph, v is a node. A node u is
called a neighbor ofv if there is an edge between u and v. The neighbor-­
hood tree ofv is defined as the subgraph ofT(v)-(N(v)t L(v» of G, where
N(v) consists of the neighbors ofv and v itself, L(v) consists of the edges
between v and its neighbors.

Given a chain Q={Vltv;t,">tv,} ofnodes, a logical display frame (LDF), F ==
(T,Q) oonsists of a spanning tree T of the union of the neighborhood trees
ofthese nodes and Q; the nodes Vt.V2.,m,V, are called thefocus nodes ofF.

We proceed by visualizing a sequence F1={Th Ql), F2-(T2,Q2) ... of logi­
cal display fmmes. To limit the size of these frames,. we assume a upper
bound B on the number offocus nodes in them, that is, IQil<=B (i=I,2,...),
where IQiI denotes the number ofnodes in Q,.

To obtain Fi+l from F~ the user selects a non-focus node u in Fl with a
mouse click, if u has more than one neighbors, then it becomes a new fo­
cus node of Fi+l; Now if IQ,FB, we will delete an old focus node v from
Q" that is, the chain of focus nodes in FI+1 is Qi+l=Qt+{U}·{v}. We choose
v to be one ofthe focus nodes in Ql whose graph-theoretical distance from
u is the largest in F.. Using these focus nodes, we can easily calculate Fi+I.

A drawing D of a Web graph G = (V, E) consists of a location for each
node v E V and a route for each edge it t5 E .. A visualization of the se­
quence FI == (Tit QI), F2 = (T2, Q2), ... of display frames consists of a
dmwing Dj ofeach graph Tl• Dmwing sequences occur in many intemctive
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systems wbWh handle relational information. Most such systems suffer
from the "mental map" problem: a sman logical change in the graph re~

suits in a large change in relative positions of nodes in the drawing. The
mental map problem is addressed by using animation or "in~betweening"

along with a foroe-directed layout algorithm (as discussed below) to pre~

serve the mental map between drawings.

Bach drawing DI is a "spring drawing"', that is, it is calculated using the
:force..directed algorithm. The "in~betweening" toohniqne aims to achieve
the twin goals ofgood layout and the preservation of the mental map. The
in.betweening consists ofa sequence D\ DII. WI, ••• DI,ofdrawings ofT.
called screens. They are computed by the ~ed spring oJgorithm
(Huang et al. 1998b), based on the original spring algorithm (Eades 1984).

The modified sprin; algorithm seeks an equilibrium configuration of the
forces for the current display frame F•. That is, a drawing in which the total
three /(11) on each node v is zero. When a logical transformation occurs
from view FI to another view Fitl , the current equiUbrium configumtion of
the threes is broken by deleting and adding nodes. Thus, the modified
spring algorithm moves nodes toward the next equilibrium configuration
of forces for the new display frame Fl+:{, From one screen 0'1. to the next
screen 1)1+\ (each animation loop), the animation model computes the t~
tal force /(v) for every node v in Fl (except the history nodes) and moves
each node v a small amount proportional to the magnitude of /(11) in the
direction of /(v). Bach 1)1+11 has energy a little lower than that Of»'l. The
movement stops when the user makes another logical transformation, or
wheri the system reaches equiUbrium.

In order to address the specific criteria of incremental drawing and clearly
distinguish the focus nodes and their neighborboods, we have extended the
spring model by adding some extra forces among the neighboring nodes
surrounding the focus nodes. Suppose that Fr=(Q, Q,) is the display frame
being visualized, where Gr(Vb Ell is the Web graph consisting ofa vertex
set VI and edge set El, and Q. is the set offocus nodes. More precisely, the
force applied on node v is:

f(l?) == Lfl. + Lg.. + Lh..
ue:N(v) lid'! lIeQl

where fllV is the force exerted on v by the spring between u and v, and !lIV
and huv are the gravitational repnlsions exerted on v by one of the other
nodes u in the graph. This extended sprin; model aims at satisfYing the
following three important aesthetics:
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The spring force between adjacent nodes ensures that the distance between
adjacent nodes u and v is approximately equal to zero length.

• The gravitational force ensures that nodes are not too close to each
other.

• The extra gravitational force aims to minimize the overlaps among the
neighborhoods in the display frame and to keep the focus nodes along a
straight line.

7.5.3 An Example

To illustrate how the reverse Web engineering works, a simple example is
presented. Fig,. 7.11 and Fig. 7.12 demonstrate two different phases, dis­
play and creation, of the reverse engineering process. Fig. 7.11 shows that
a Web site is being selected and the corresponding Web graph is read into
the HWlT Navigator for visualization. This is achieved by selecting the
root page from the pop-up fIle management window. The layout of the
Web graph is animated when the exteuded spring model is applied. The
user may manually drag nodes and edges in the graph during animation to
adjust the graph into a user-desired layout. The user can also use this Web
graph to navigate the Web site for finding information helshe needs.

After a desired layout is reached, the user can switch from the navigation
mode to the editing mode in HWIT, and modify the attributes and structure
associated with the original graph as shown in Fig. 7.12, and then create
the new Web site by simply save this modified graph into a newly named
Web site. Fig. 7.12 is a snapshot showing that a sub-graph has been added
into the bottom of the original Web graph and the properties of node
CS6366 has been changed in the editing mode ofHWIT. The user can then
create a new Web site (the third phase of the reverse engineering process
in Fig. 7.8) by simply clicking on the "convert back" button to write back
the modified properties ofWeb graph into a newly named Web site.
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Fig. 7.11. The first phase ofreverse engineering that displays the Web graph ofm
existing site in the HWIT Navigator

Fig. 7.12. ModiiYing the mmctm'e and properties of the existing Web graph and
save the changes to create a new Web site
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7.6 Summary

This chapter has presented a visual framework to Web site design, naviga·
tion, and maintenance. It advocates the integration of the tools for all ac­
tivities, ranging from Web page and Web site design, navigation and
browsing. to Web system maintenance, while preserving the same mental
map for both the Web designer and the Web user throughout these activi­
ties. The presented approach is a step closer towards narrowing the gap be­
tween Web designers and users (Nakayama et al. 2000).

A prototype of HWlT bas been implemented in Java, which is capable of
generating Web sites from Web graphs drawn on the HWIT Graph Editor.
The Web m.engineering and reverse Web engineering capability in HWIT
allows previously developed Web sites to be visualized and re-developed
graphically. The modified spring algorithm can be adapted to support more
personalized and pleasant viewing during navigation and maintenance.

This work bas opened up many more opportunities for further investiga·
tion. Possible future work includes the following.

• Security features can be built into the framework so that different
groups ofpeople may access different parts ofa Web site.

• Empirical studies need also be conducted in order to evaluate the us­
ability ofHWIT in real world applications.

7.7 Related Work

To aid. Web navigation and maintenance with a sense of orientation, re­
searchers have proposed "site mapping" methods for constructing a struc­
tured geometrical map for one Web site (Maarek and Shaul 1997) or for
comparing the structures and contents of different Web sites (Liu et al.
20(2). They can guide the nser through a limited region of the Web. Other
approaches defme the entire WWW as a graph and then navigate the graph
(Anupam et aI. 2000; Huang et al. 1998a). Yet, these systems do not sup­
port the integration ofWeb site design, navigation. and maintenance.

Varions tools and methodologies have been developed or proposed in the
past few years. Most of the tools assist, in one way or another, different
areas of WWW development, mainly aiming at improving navigation. For
example, Fisheye-View Graphical Browser (Muchaluat et a!. 1998) adopts
fisbeye view filtering strategies (Sarkar and Brown 1994) to allow logical
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management of documents with nested compositions. This browser de­
grades dramatically as the number ofnodes increases.

WebMap (Doemel 1994) shows a 2D graphical relationship between
pages. Small circles depict pages whereas Jinks are coloured to indicate the
status of destination documents. Users can visualize the doeutnent space
without having to visit all doeutnents since WebMap implements an ex·
ploratory approach to gather the documents as a batch job. However, the
whole process is time.oonsuming and resouree intensive.

PadPrints (Bederson et al 1998) is a zooming Web browser within a
multi·seale graphical envirollD:1el1t. [t displays multiple pages at a time and
a large zoomable information surface depicts the Jinks between the pages.
The current page is clearly shown as it is larger than other pages. The sys.
rem only enhances information browsing among different documents.

WebML (em et al 2000) uses a model·based approach to Web site de·
velopmenl In WebML, a structural model expresses the site's data oontent
using commonly accepted modeling languages such as UML; hypertext
model describes the contents and structure ofthe site's pages; presentation
model dictates how the pages are presented with a layout specification; fl·
nally, personalization model allows grou:P'"'based or individual·based con·
tent categorization.

Other tools use software en.gi.neering methodology to approach Web de·
velopment. For example, WOOM (Coda et al. 1998; l{lapsing et at 2001)
and XWMF (G6mez et at 2001) use object·based formal metadata model
for designing Web structures expressed as directed acyclic graphs (DAGs).
The emphasis is on the high level design for interoperable exchange and
reasoning about the Web data. The OQ.H (Object.Qriented Hypermedia)
method uses ~like conceptual modeling to specify navigation and
presentation features. They do not address the important issue of inte.
grated view or offer the capability ofreverse engineering.
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8.1 Introduction

Implementing a visual programming language (VPL) is ll1l.lCh harder than
implementing a textual programming language (Myers 1990). VPLs are
usually embedded and tightly integrated within visual environments. Con­
sequently, they are often characterized by the attributes of the environ­
ments (Goldberg et al. 1994). The VPL implementation involves the im­
plementation of a whole programming environment with Ii user interface
which supports developing programs using a visual language. Notice that
VPL interfaces are not the same as graphical user interfaces (GUIs) nor are
they just for visualization. Traditional GUI development toolkits are in­
adequate for the creation of VPLs because they do not support syntactic
and semantic specifications of visual programming. The graphical user in­
terface ofa visual Ian.guage relates to the language's syntax and semantics.
The interaction (dialogue) between the interface, the syntax and the seman­
tics must be maintained Implementing a VPL interface and its support for
syntactic and semantio specifications ofvisual programming suffers from a
problem common to all large, complex software systems, i.e. the genera­
tion is difficult and time consuming. The remaining part ofthis section will
address the typical problems ofimplementing VPLs.

8.1.2 Why Automatic Generation?

Repetitive efforts have been spent on developing various domain-oriented
VPLs, due to their specialised requirements and inseparatable development
processes. In a visual programming environment, users must be able to in­
teractively construet and manipulate expressions in the visual language.
The graphical requirements of a visual language include defining the
visual elements of the language and the graphical relationships that must
be maintained when these elements are connected together. The editing
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operations themselves are event-driven, and appropriate interpretations of
mouse and keyboard events must be provided. Algorithms must be pro·
vided for graphically editing these elements. The solutions to these graphi­
cal requirements are intricate and inherently difficult to implement. The
underlying data st:ructures are complex, containing information about the
visual representation. logical connectivity, domain knowledge, etc. They
make it difficult to parse an edited diagram with a general parsing algo­
rithm. Existing solutions to solving the data structure problem tend to be so
specialized that they apply only to a single visual language.

As a textual programming language construction tool, LexlYacc divides
the process of language creation into two steps: lexicon defmltion and
g:rm.nmar specification. The created lexical and grammar analyzers are
combined together to serve as a language parser. In particular, its rules (i.e.
g:rm.nmar) can be associated with actions written in C, so that a wide range
oftextual languages can be specified. The fundamental reason that no VPL
generation tools can be as effective as LexIYace is that no design model
has been able to completely separate the processes ofvisual elements crea­
tion, visual editing, and syntax and semantics specifications. Therefore, it
is difficult to integrate independently developed functional components
into a single VPE. Existing tools that aim at supporting different aspects of
VPL generation, e.g., fur user interface generation, and for parsing,. are not
able to cooperate to generate VPLs. The generation of every new visual
language requires iii. re-development of the whole machinery.

Another problem with many VPL generation. tools is that their underlying
graph furmalisms are not expressive enough to describe many types ofvis­
uallanguages or not efficient enough to parse various types of visual pro.
g:rm.ns. The multi-dimensionality of visual languages makes it difficult to
build fonnal grammars and compilers for them. While text strings only al­
low concatenation before or after a character, visual languages allow mul­
tiple concatenation options between its visual elements. Attempts at devel­
oping visual grammars using textual grammars as models have had limited
success; many visual language formalisms cannot be specified and parsed
effectively and efficiently wi.th existing grammars. We have addressed this
problem by developing the Reserved Graph Grammar formalism, and its
spatial counterpart. the Spatial Graph Grammar formalism, as discussed in
Chapters 2 and :3.

Tools and formalisms have been created for autolnatically generating vis­
ual languages. Most of them are specialized in certain aspects of visual
language generation. e.g., user interface or grarmnar formalism. For exam­
ple, Pietriga (2005) presented a toolkit called ZVTM based on the layers of
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virl:11al spaces, zoomable cameras, and glyphs. ZVTM aims at promoting
and development of user-interface aspects of visual programming envi­
ronments by easing the creation of struetnred graphical editors. Others
provide support for producing a complete visual language environment
with limited capabilities. For example, VPE generation tools based on
gmnunar formalisms usually generate visual editors automatically through
their grammars. This is the easiest way to produce a visual editor. but gen­
erated visual editors are often not user-mendly and the ftmctionalities are
limited (Costagliola et aL 1995). Yet. the formalisms which can generate
powerful visual editors do not provide an adequate mechanism to support
syntactic and semantic specifications (Brown 1997) or are ineffi.cient in
parsing (Rebrs and SchOrr 1(96).

8.1.3 A GenerIc Multi-Level Approach

To avoid the re-development. we need to find a proper representation of
the data structure and a generic model. which are able to decouple the
components of a visual programming environment The approach to be
presented is to view a target or domain-oriented WE as a specific instance
of a generic WE such that the techniques applicable to the generic WE
can also apply to the target VPE and ftmctionalities common to the VPEs
need not be re-developed. This approach enables the design of a generic
visual ft'amework that can be cnstomized into any target VPHs. Such a ens­
tomization process is realised by a set of visual specification tools in a
similar fashion as by LexIYace in generating text:uallauguages. The main
characteristics ofthis work include

• a high level design model that supports a generic but customizable
framework with deooupled functional modules;

• a set of customization and specification tools which are visual tools
supporting direct manipulation; and

• an underlying graphical formalism that can express and parse a wide
range of visual languages effectively and efficiently.

This chapter presents the design of a generic visual programming envi­
ronment which has a multi-level tool structure. It addresses the issues in
developing a design model that supports the development of a WE by di­
viding the whole development process into several independent stages.
The model offers several decoupled ftmctional modules, each supporting
an independent development stage. This makes it possible to develop an
effective generic system for the generation and reuse of a wide range of
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VPLs. The chapter describes a toolset called VisPro which provides a
similar mechanism as lexlyacc in the process of constructing VPLs. It is
very easy to use, since the tools in VisPro are meta visual languages. To
formally represent VPLs. VisPro uses reserved graph grammars presented
in Chapter 2 to express a wide range of diagrammatic VPLs. A graph
grmnmar in VisPro is a set of graph rewriting rules associated with actions
written in Java. The target language compilers for a large class of diagrams
can be automatically generated in polynomial time by VisPro according to
the grammar specificatiOllB. Moreover. a set of language components (i.e.
visual objects) can be created through direct manipulation and a visual edi~

tor can be produced according to control specifications. A visual pro~

gralnlnWg environment integrating the visual. editor and the compiler is
then crcated. Therefore, VisPro provides a bigh level support for VL de~

velopers to rapidly construct a wide variety of domain~orienteddiagmm­
lnlltic VPLs. It can easily create both the user interface and the underlying
language.

The chapter focuses on the design. construction, and application of VisPro.
It is organized as the following. Section 8.2 sUlnlnarizes the design criteria
for a generic VPE, followed by a detailed discussion of the VisPro design
model that meets the criteria in Section 8.3. Section 8.4 describes the~
sign. of the VisPro toolset which consists of a set of decoupled. functional
modules. Section 8.5 presents an application of the VisPro system in gen~

erating a visnal distributed modeling language. The chapter is sUlnlnllrized
by Section 8.6.

8.2 Design Criteria for VPEs

A generic VPE can be viewed as a collection of visual and textual specifi~

cation tools, which are thelnSelves visual languages and/or textual lan­
guages. A program for generating a domain~specific VPE is a combination
of specifications written in a set of hierarchically organized languages.
Such a complex environment needs a careful design. We regard the fol­
lowing three aspects as the key to the successful design ofa generic VPE.

• Heterogeneous programmiBg: the VPE should support heterogen~
008 visual programming, where various visual languages and textual
languages at different levels of abstmction can work together to spec­
ify real world applications.

• HierardJieal strocture: with the support of various languages and
programming paradigms, the VPE should have a well-designed
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mechanism that organizes and coordinates the languages in an effec­
tive and efficient manner.

• Desip model: to increase the reusability of existing visnallanguages
and various language components and simplify the generation of d0­
main-specific VPBs, the generic VPE should be designed as several
decoupled modules which can be developed independently with p0s­
sibly different formalisms.

The following sections discuss these criteria in more details and how a ge­
neric VPE is designed against the criteria.

8.2.1 Heterogeneous Visual Programming

The argument for supporting heterogeneous visual programming is based
on the following considerations:

• High Level Programming: Visual languages do not usnally snpport
the entire programming process (Burnett 1994). A typical class of
visual languages: is designed to be used for visual manipulation at a
high level and to combine low level application components which
could be written in text languages. Examples of this approach include
the object-oriented visnal programming system m­
VISUAL (Hirakawa et aI. 1991) and the Web service composition
language ZenFlow (Martinez et aI. 2(05).

• Low Level P:rogramming: Another class of VPLs allows program­
ming only at the lowest level. This type of languages have all the
capabilities needed to express the fine-grain logic in a program, such
as conditions and repetitions. But they do not have the facilities to
organize portions of the program into modules. Most VPLs of this
nature are intended for specific problem solving. They provide a
number of primitives for their particular domains, thereby keeping
most programs small enough to avoid the need for user-defined
abstractions. One example is tbe NoPump system for interactive
graphics (Wilde and Lewis 1990). For snch low level VPLs, a high
level organization mechanism could enhance their usability in large
scale applications.

• IncIependeBt Development: If visual languages are independently
developed to suit different application purposes, they are usually un­
related to each other. It is difficult, or impossible, to make these
visual languages work together to solve a complicated problem. The
most plausible way is through a high level protocol, such as a
formatted information transfer system under the OS level. However,
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such a protocol is usually inefficient and error"prone. A framework
for creating hybrid visual programming environments is, therefore,
desirable.

8.2.2 Hierarchical Structure

Schofstrom and van den Brock (1993) proposed a model that organizes
tools used in the software engineering Hfe cycle (Salis ot a1. 1995). A so·
phisticated application may be specified or modeled by more than one
software tool in a coordinated fashion. These tools may work at different
levels of the software development process, but may interact at the same
level. The relationships among the tools in a programming environment
can be seen as a multi-level tool structure which support", the following
concepts, as illustrated in Fig. fU.

Fig.8.l. Multi·level tool 8tl'lJC1Ure

A service is the smallest functional unit of interest to a developer. A tool
is a strongly related and clearly delimited set of services that support a par·
ticular job, such as a diagram. editor. Similarly, a toolset has a set of tools
that show strong internal cohesion and low external coupling. The set of
tools work together to cover part of the development process such as a
compiler, its associated syntax directed editor, and debugger. An envi­
ronment is a group of toolsets. Aframework is a set of software modules
that are related to several tools and are typically well·documented and
supported.

As the scope of the support entity increases from a single tool to a large
environment, the cohesion among its components will inevitably decrease.
At the same time, the conpling ofthe components may also decrease, or at
least not increase. The primary reason for this is that, as the support scope
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widens, the range of 8lJ.pport activities diversifies. So:ftwa.re development
planning, for example, uses toolsets different from lOOse for so:ftwa.re eon­
struction (programming. integration, and testing).

A sophisticated programming environment, such as a so:ftwa.re engineering
environment, may have a set of viwal or textual languages. With the
mulfi..lewl tool struetIlre, the languages may be seen as tools in the envi­
ronment.

8.3 Design Model

To design a visual programming environment, one needs to consider the
language's syntax and semantics, and the visual interface. For supporting
the generation ofa wide range of VPLs, we aim to maximize the reuseabil­
ity ofthe language components with the following considerations:

• different modules of a VPE should be designed and implemented
separately. and

• improvement of one module should have little impact on other moo-
ules.

To ease maintenanee, modification, and reuse of a VPE, interactions be-­
tween different modules of the VPE shonld be clearly specified. This also
simplifies a VPE's generation by dividing the VPE into several deooupled
modules, and allows different ftmnalisms to be developed into individual
modules.

8.3.1 The MVC Framework

A popular model for the user intm'f8ee construction is the Model-View­
Controller (MVC) (Krasner and Pope 1988) framework that has been
successfully used in Smalltalk-80. MVC consists of three types ofobjects:
Model, View and Controller. Model represents the logical structure ofan
application, whose screen presentation is View. View requests data from
Model and handles all the graphical tasks. Controller defines the way in
which a user-intm'f8ee reacts to user inputs. The standard interaction cycle
is that the user provides some input action and Controller responds by in­
voking an appropriate operation in Model. Model then carries out the pre­
scribed operation, possibly changes its state, and broadcasts the changes to
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aU its dependent Views. Each View can query Model for its state and up­
date its display, ifneeessary.

There are some implementations of MVC which effectively decouple the
relations between different objects and enhance the reusabil­
ity (McWhirter and Nutt 1994; Minas and Viehstaedt 1.995). They
are, however, mainly for constructing user-interfaces with windows appli­
cations, rather than for constructing visual languages. For constructing
VPLs, more detailed specifications and. tools are needed for declaring and
specifying the required interations between the system modules.

Based. on MVC, the DV-Centro framework (Brown 1997) aims at support­
ing visual language development, as shown in Fig. 8.2. It uses the Supervi­
sor-Agent pattern to specify the interactions between the modules in the
framework.

IViewController I conttolshmageControllerl
notifies

notifies notifies

I
controls

View I
notifies

controls
oonttols I ImageView I

control

I Subject I

Fig. U. TI1l1l DV-Centro hmework

I SupervillOf I'totifies contro!£1 Agent

The Supervisor-Agent pattern (Fig. 8.3) assumes that Supervisor must be
able to control Agent's behavior, while Agent is independent of SuperviM

301', except that it may notify Supervisor in a predefined protocoL Since a
Supervisor-Agent pattern indicates a olle direction dependency, Le. the de­
sign of Supervisor depends on that of Agent, the DV-Centro framework
reduces the number of dependent relationships in a general MVC modeL
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For example. ImageView in Fig. 8.2 is independent: from other modules.
so that it can be developed as a standalone tool.

Subject

Fig. L5. A Subjecl with two versions of View

There are. however. other dependency relationships (as shown in Fig. 8.4)
which have impact on the design and implementation of various modules.
For example. View depends on Subject. which means that it must be de­
signed after the design of Subject. Any change of Subject may affect
View. On the other hand. as Subject is more application-specifie than
other modules. the relationships between View and Subject should be re·
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versed. For example, Fig. 8.5 shows a model having a Subject with two
versions of View. The model contains some data values, and the views de~

fme a histogram and a pie chart It communicates with its views when its
values change, and the views communicate with the model to access these
values. With the DV-Centro framework, the histogram and the pie chart
have to he designed according to the specifications of the model. But we
believe that the design of the histogram and pie ehart should be independ­
ent of the model so that they are general enough to be predefined in a tool­
set. The best solution is that Subject and View are designed. to be inde­
pendent of each other so that a subject can use any suitable views without
changing itselfand the views.

8.3.2 An Ideal Design Model

The dependence of ViewController on ImageController and View im­
plies that the high level control depends on its low level implementation
(e.g. ImageControlIer). It however, desirable that any improvement on
the low level facilities will have no impact on the high level specification.
So a model that removes the dependency relationship between ViewCon­
troller and ImageController is more flexibl.e.

Considering the model in Fig. 8.4 where the link between ViewController
and ImageController bas been removed, we find that View becomes a
key module because it relates to almost all the other modules. To allow
ViewControlIer, Subject, and ImageController/imageView to be de­
signed and implemented independently, we propose to reverse the relation­
ship between View and ImageView so that these modules depend only on
View. The resulting improved framework is shown in Fig. 8.6, where
View serves as an interactive protocol between different modules.

To represent this framework with the MVC notations, we redefine it as an
ideal design model as shown in Fig. 8.7, where View corresponds to 1m­
ageController and ImageView in Fig. 8.6, Model corresponds to Sub­
ject, Controller corresponds to ViewController, and Protocol replaces
the previous View. This new design model confines the dependencies b~
tween the functional modules sucb that each module can be developed in­
dependently.
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Subject

Fig. 1.1. An ideal design model

a3.3 The VisPro Design Model

The VisPro design model needs a protocol to define the interaction be­
tween its functional modules. The protocol is designed as a combination of
an abstract diagram and a concept space, as shown in Fig. 8.8. An ab­
stract diagram represents a common intemal data structure that may be
used to display diagrams in various formats, such as Nassi-Sbneiderman
diagrams and flowclmrtB. In an abstract diagram. which can be considered
a kind of entity:-relationship diagram, directions. distances. data and con­
trol flows, joins. contacts, etc, can all be represented as relations between
entities. A concept space is a set of specifications for a group of objects
that share some common cbaraeteristies. If we view a concept space as a
lexicon of a visual language, an abstract diagram provides the sentence
&1:nlOture with which the words of the lexicon can be described as visual
sentences by associating each word with an entity or a relation of the
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abstmct diagram. The sentences are constructed through direct manipula­
tion by the user on the screen (View) and controlled by Controller. By
providing a high level description of domain concepts in the form of a
concept space, Model can interpret the visual sentences. The VisPro de­
sign model specifies the roles of Model, View and Controller, and how
they interact with each other in the design model.

Fig. 8.8. The VisPro design model

• User Interadiou Control: View consists of visual objects which can
be manipulated directly on the screen. For example, a user may move
the mouse onto a visual object and click the left button to trigger an
action. When a visual object receives a user input, View sends the visual
object to Controller, which intelprets the input and sends back a
control command indicating what View sbould do next. For example,
Controller may instruct View to pop up a menu to allow the user to act
further.

• Diagram Creation: A graph consisti.llg of a set of visual objects can be
created on a visual editor controlled by tbe Controller. Once the graph
is constructed, its abstract diagram witb domain concepts is created. The
mapping relationships between an abstract diagram and a graph implies
that the abstract diagram provides a logical interface understood by all
the VPE modules, and any modification to tbe abstract diagram will be
reflected on the graph on the screen. A visual editor itself can be a
visual object in View.

• Parsing: Model receives parsing demands from Controller and per­
forms corresponding transformations and computations on abstract dia­
grams.

• Layont and Animattou: Ifan abstract diagram is associated with visual
concepts, the parsing algorithm can perform graph layout and animation
by operating on the visual concepts. This is because the appearance of a
visual object may be changed dynamically when. its visual attributes are
modified through the corresponding concepts.
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In summary, as long as a domain concept space is provided. each module
can be designed independently and used with other modules by sharing an
abstract diagram and some domain concepts. The following are detailed
descriptions ofabstract diagrams and concept space.

8.4 The VlsPro Toolset

Based on the above design model, we have developed a generic WE and a
set of visual prognunming tools for generating domain-oriented
WEI (Zllana and Zllana 1998). The generic WE can be customized to
any domain WEB once the domain specifications are provided through
these tools. Fig. 8.9 shows the generation process, which is supported by
the following three tools:

1. visual object generator that is used to specify visual objects with
desired appearances to be used in the target visuallangnage.

2. rule specification generator that is used to provide the parsing
specification for the target visual langnage in the form of graph re­
writing rules, and

3. control specification generator that is used to specify the control
commands for each generated visual object manipulated in a visual
editor. which is to be automatically generated.

Fig. L'. Coostructing VPEs with VisPro
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In VisPro. the object-oriented language Java serves as a low level specifi­
cation tool fur details which may not be effectively or accurately specified
in these visual specification tools. This arrangement allows users to pre­
cisely construct effective visual programming environments.

The tools are meta visnal programming languages that are used to specify
domain WEs through direct manipulation. First. the Visual Object Gen­
erator is used to construct visual objects - it creates the appearance of each
visual object. and attaches a specification of its behaviour produced by
other tools. or another visnal program as its logical function. The user then
uses the Control Specification Generator to specify the behaviours of con­
structed visnal objects. The specifications will define and automatically
generate a visual editor for the target visual language. Finally, with the
Rule Specification Generator, the user can describe the granunar of the
visual language in forms ofgraph rewriting rules (Zhang and Zhang 1991).
The rules can be specified as either graphical productions or textual ones
written in Java as action codes. Having obtained all the required specifica­
tions. the generic VPE becomes customized to the desired domain VPE
that integrates the target visual language editor and compiler.

With VisPro, a complete VPL is specified by a lexicon defmition and a
grammar specification. A lexicon definition describes the VPL's visual ob­
jects and the editor with which the visual objects can be used to create a
program. A grammar specification (syntax and semantics) defmes whether
the program is valid and what it means. A visual programming environ­
ment is created automatically based on the definition and the specification.

8.4.1 A Case Study

In the following sections, we will explain the functions and the use of each
specification tool by demonstrating the construction of a simple visual
programming environment called summation. More sophisticated VPEs
can be similarly built through the same process but with more interactions,
which will be the subject of Section 8.5. Fig. 8.10 is a snapshot. taken dur­
ing the use of the generated summation. Using summation, one can sum
up integers and visualize results. It has three visual classes: numbers,
pluses, and scalers. A number stores an integer which can be entered
through the keyboard. A plus receives integers from two numbers and pro­
duces their summation, also as an integer, which can be stored as a num­
ber, sent to another plus, or sent to a scaler for visualization. A scaler visu­
alizes an integer in a vertical bar. In Fig. 8.10, the maximal (100) and
minimal (0) values of the scaler can be changed by entering new values
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through the keyboard. Doring the program execution. the displays of the
numbers and sca1ers are changed according to the values sent to them. The
following sections introduce the spec:ification tools and explain how sum­
mation can be created using these tools.

pointer

Fig. 8.10. A snapshot ofthe summation VPB

8.4.2 Visual Object Generator

In the VisPro framework, the Visual Object (VO) generator generates a set
ofvisual classes to suit any special-purpose visual language by editing the
predefined visual objects called VO prototypes. We call such a process
customization. A constructed visual object is not just an image. It can be
manipulated and may be a composite gntph, whose components can be
manipulated independently.

A VO prototype is customizable. Fig. 8.11(8) shows two visual classes
which have been customized, and 8 VO prototype which is a black box in
its original form. One can edit the VO prototype by triggering the editing
commands attached to the box. by clicking the right: mouse button
when the cursor is over the box. Fig. 8.11(8) shows the menu commands of
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the box. For example, by selecting the command create[node] in the
menu items. a node can be created in the box.. A sub·graph or a node lUIS
its own commands which can be popped up in a menu and used for editing
the sub-graph to obtain a desired shape and color.

(a)

Fig-lUI. Snapshots ofvisual object construction

(b)

To construct 11 scaler. for example. a command called seleetShape can be
triggered from the pop-up menu. This connnand opens a dialog box which
contains a set ofgraph patterns. Ifa sealer is selected. the black box will be
reshaped to a scaler as shown in Fig. 8..1l(b). The dimension and color of
the scaler can be edited and also labeled ifnecessary.

Fig. 8.11(b) shows three nodes that have been created: number. plus. and
sealer. One may notice that the sealer has a fixed pointer. According to the
semantics. the pointer should be created dynamically using the mouse dur·
ing program editing. and a sealer can have more than one pointer at a time.
This is done in the YO generator by specifYing its construction style as
"dynamic" (by selecting the menu item construction in the command
menu).

We use attributes to parameterize all the three node classes ofsurnrnation.
The domain attribute for the scaler is (pointer, integer). that for the num­
ber is ("value", integer). and that for the plus is ("ln1", Integer), ("in2",
integer) and ("sum", integer). For example. when we need to set a value
3 to a number object called nurn, we simply write: nurn.put("value", 3),
where put is iii. method ofthe number class.
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For a scaler class. a method of its attributes called puLdo can be rewri:tten
so that when the value of a number connected to the pointer of the scaler
changes. the position of the pointer will be adjusted aeoordingly. This
modification is done in Java. Other modules do not need to know this
modification when using the scaler. as the put method will automatieally
eall the puLdo method Therefore. a method call bh scaler.put(pointar,
3) will put an integer 3 into the attributes associated with the scaler and ad­
just the position ofthe pointer geometrically.

An edge class can also be created in the VO generator. The edge named
flow-to used in summation is defined as shown in Fig. 8.12. where two lit­
tle filled rectangles are supposed to be replaeed by two nodes in an appli­
cation when the edge is used. The VO prototype ofan edge can be custom­
ized by changing its shape, color and label through the menu items
seledShape, selectColor and setlabel respectively.

Fig.1.12. Generating an edge class with the vo generator

A diagram workbench prototype can be customized to a workbench for a
specific VPL with a set of node classes and edge classes. This is obtained
via the control specification. A workbench can be accessed, e.g. opened,
through its icon. Fig. 8.13 shows an icon for the summation workbench,
which can be created in another diagram workbench as a special icon.
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Fig. 11.13. An icon for summation

8.4.3 Control Specification Generator

8.4.3.1 Objecf-ortented EdIting Commands

The process ofediting a graph can be considered cons.isting of iii. number of
steps, each being an execution of a command on the graph. Usually in a
visual editor, commands and visual objects are independent of each other.
Execution ofa command is the selection ofboth the command and its tar­
get graph. In the object-oriented formalism, a graph is an object which en­
capsulates iii. set ofrelated commands.

The Control Specification (CS) generator is used to visually generate a
control specification which can be understood by the object-oriented con­
troller. The controller allows basic commands to be triggered from its can­
vas and user-defined commands to be triggered from the created visual ob­
jects.

The CS generator assigns iii. set of editing commands and relationships to
each visual class. The visual objects instantiated from a visual class can
then trigger the assigned commands. The basic editing commands include
cut, copy, paste, create, link, open, and properties, which are pre-defined in
the VisPro framework. If iii. user wishes to define additional commands,
helshe can specifY them in Java.
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114.3.2 Command SpecHlcstIon

Fig. 8.14 shows Ii visual sentence which specifies Ii part of control in
summation. The visual objects handled in the CS generator include edge
objects, node objects and oommand objects. An edge object, e.g. an ellipse
in Fig. 8.14, is an instance of the edge class defined in the target VPL. Its
value is the label type ofan edge class, i.e. flow-to, which can be entered
or nmdified through the keyboard A node object, drawn as an unfilled rec­
tangle, is an instance ofIi node class. It can be edited to form. a super node
which is embedded with some other nodes. For example, the node labeled
plus represents the plus class ofsummatitm. A command object. i.e. a gray
box in Fig. 8.14. represents an editing command, and its value (i.e•• delete.
link, etc.) can also be entered through the keyboard.

Fig. 8.14. An example ofcommand specifications

In Fig. 8.14. the node object labeled Workbench represents the visual edi­
tor for summation. "Workbench" is a reserved word in the CS generator.
The Workbench node links to Ii command list which includes three cre­
ate commands. A create specification can be generated by interpreting
the link: betweeo lit command object and a node. A create command node
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linking a plus node, fox example, will be interpreted to produce a cmu­
mand specification create create(plus] plus. where create[plus] is the
name ofthe command menu item.

The number node object is a super node that has two embedded nodes in
and out. The out node has one command link. which links to an edge ob­
ject labeled flow-to. The flow-to edge object links to the nodes in1, in2,
in. and pointer. This indicates that an out can link to lUI in1, in2, in, or a
pointer in swnmation.

The control specification. diagrmn in Fig. 8.14 will produce a list ofcontrol
specifications as the following:

Workbench
3
create create[plus] plus
create create[number] number
create create[scaler] scaler

It indicates that three create commands can be triggered from the visual
editox canvas. The specification

number. out
1
link connect flow-to

indicates that number.out has a link command nmned connect and can be
linked to other nodes through the edge object instlUltiated from the flow-to
edge class.

The specifications

VE number. out flow-to plus. inl
VE number.out flow-to plus.in2
VB number.out flow-to number.in
VB number.out flow-to scaler.point.

describe that the number.out may be linked to visual objects instantiated
frmn plus.!n1, plus.ln2, number.!n, and scaler.point visual classes,
where number.out represents an out node in a number super node. The
number.out cannot link to other node classes which are not provided in
the specifications.

The control specification diagrmn in Fig. 8.14 can be extended. to specifY
the complete behavior of S1;lmmation. Thus, the CS generator provides an
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intuitive and easy way tu produce the control specification for a visual edi­
tor.

8.4.4 Rule Specification Generator

Fig. 8.15 shows a reserved graph gran:mw for mmmatitm. Tlw gran:mw
oompletely describes the syntax of a valid mmmation diagram. For exam­
ple.

~ _ t!IIlllUlllber

~ :.= 1i8IJI

'"

Fig.IU5. A reserved graph grammar for summation
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• plus.in1 (or plus.in2, or number.!n) CM connect to plus.out or num­
ber.out but cannot connect to more than one destination.

• plus.out (or number.out) CM link to one or more destinations, which
include number.in, plus.in1, plus.in2 and scaler.pointer.

The graph grammar also specifies the sem.antic aspects. Fig. 8.16 shows a
valid summation diagram. According to the semantics, sub-graph (1) must
be interpreted first by applying the grammar rule of Production (3). Sub­
graph (2) should be done next, followed by sub-graph (3). Otherwise, a
wrong result will be produced. For example, if sub-graph (2) is interpreted
fu:st, since its numbers do not have the correct values (from sub-graph (1»,
the result of sub-graph (2) will be incorrect. Such an order of applications
is not allowed according to the graph rewriting system which dictates that
II rule can be applied to an unmarked visual object only if all of the ob­
ject's edges are matched by the rule.

A detailed description and formal treatment of reserved graph grammars
and their parsing complexity CM. be found in Chapter 2.
, .

:-(1)

,,
I
I

:---<2)

I
I,
I,
.-(3),
I,
I,
•

.......... ""' ....... -J

Fig. 8.16. Application ofllie grammar
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Parsing a diagram takes two phases: synta:x: parsing and semantics parsing.
Synta:x: parsing is to check whether the diagram is valid. If a diagram is
eventually transformed into an initial graph (i.e. A.) by the graph rewriting
roles, it is valid. Semantics parsing is to produce a remIt from a diagram.
The result is meaningful only when the diagram is valid. In a translation
process, say from a diagram to a textnal specification, the synta:x: and se­
mantics can usually be specifIed in the same set of graph rewriting roles.
In this case, the graph transformation process checks the synta:x: and trans­
lates a graph into a textual specification at the same time. For an executa­
ble diagram, this is not always the case. The synta:x: and semantics specifi­
cations of a Petri net visual language, for example, should be specified
separately. This is because a Petri net can be executed repeatedly, while
the syntax checking must be done in finite steps. For SZt1'I'VrIation, the syn­
tax and semantics can be specified with the same set of graph rewriting
rules, as shown in Fig. 8.15.

As mentioned in earlier chapters, an action code performs synta:x:-direoted
computation over the attributes of a redex (a sub-graph of the program
which is isomorphic to the right graph of a production) when the pr0duc­
tion is applied. The actions of the graph rewriting mles of mmmation are
listed in Fig. IUS. With the actions, the desired results can be produced af­
ter the graph transformation. For example, the action of Production (3) is
as follows.

action (AAMGraph g)
{

Attributes attributes=g.getAttributes();
int sum=(int)({property)attrlbutes(1).get("value"»

+(int)«Property)attrlbutes(2).get("value"»;
(Property)attrlbutes(3).put("sum", sum)

}
The action takes a graph 9 as its input. This graph has a matching redex
isomorphic to the right graph of Production{3). To faoilitate the aceess of
attributes in the redex, an array referring to required attributes is first pro­
duced through the method g.getAttributes(). The array member attrib­
utes(2), for example, refers to the attributes of the super node which has a
A]ef=2, i.e" number[2:2] in the :tl.gure, The sum is calculated by sum­
ming up values of two matched numbers. It is then stored in attrlbutes(3)
as a remit

The Rule Speoification (llS) generator faeilitates the rule speeification.
Fig. 8.17 is a snapshot when using the llS generator. where two kinds of
nodes Qeft graph node and right graph node) are nsed to represent the left
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graph and the right graph of a production. For examplef the node labeled
L(3) is a left graph node for Production (3). The node labeled Duplex is
tbe head of the role list. It indicates that the roles are applied in a duplex
mode sucb that a production. is oreated by linking a left grapb node and a
right graph node. Each graph node has a sub-editor for defining a graph in
the node. In addition. a textual editor workbenoh can be triggered from the
right graph to be used for writing action oodes.

Fig. 8.l7. A snapshot of the role editor

Fig. 8.17 shows a snapshot of creating Production (3) of the summation
graph grammar. where two windows are opened for editing the left graph
and the right graph of the production respectively. Also there is a textual
window for editing the action. Thus f the as generator provides visual
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editors for specifying the graph rewriting rules, and a textual editor for
specifying actions, The RS generator can compose complete graph rewrit·
ing rules automatically by interpreting the connected editors.

8.4.5 Implementation

The VisPro architecture includes seven functional modules (Zhang 1997),
as shown in Fig. 8.18:
• The configuration interpreter receives the configuration specification.

and transfers the lexicon definition of the specification to the user inter~

face and the grammar specification to the parsing module,
• The user interface controls the interaction between users and the VisPro

tools,
• The underlying strncture manages the diagrams which are being edited.
• During parsing, the logical structure module creates and JllB.l1age8 the

logical graph converted from the underlying structure of a diagram.
• The parsing module is designed to parse the logical structure of a dia~

gram using the reserved graph grammar formalism.
• The documentation module automatically records edited di8g:ra.ms and

parsing results.
• The actions module collects actions for each VPL from grammar speci­

fications. The collected actions are represented as a Java program and
dynamically linked to the parsing module during execution,

Fig. 8.18. 'I'be VisPro architecture

The above VisPro architecture was implemented in Java. One advantage of
using Java is that it is platform independent, so that the system can be
ported to different platforms. Another advantage is that Java is developed
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for network programming. This characteristic can support the construction
of VPLs which allow visual progrmnming for the Internet and distributed
applications.

8.5 A C8se Study: Generating A Distributed Programming
Environment

This section. demonstrates the application of VisPro in generating a dis­
tributed programming environment, caUed PEDS. It describes the features
of PEDS and then shows how the PEDS environment is generated using
VisPro.

8.5.1 PEDS

In a beterogeneous distributed system, processors and software resou:roes
available are of different types. It is often difficult for a user to interface
cooperative processes wbicb are implemented with different software re­
sources and located on different processors (Grimshawet aI. 1994; Shatz
19(3). Unfortunately, tbere are few systems that are aimed at providing
shared processing power in a distributed environment, while taking into
account the utilization ofsoftware resources ofthe environment.

The programming environment for distributed systems, or PEDS, has the
following important features.

• It consists of a set of tools (visual llUlguages) which can cooperate
wi.th each other to solve complicated distributed problems.

• It supports developing distributed program grapbicaUy, so that
resources sharing and mapping can be visuaUy specified. Moreover,
different grapb formalisms. such as control flow graphs and Petri
Nets, can work consistently in a single environment.

• A distributed program is divided into several local processes, wbich
may be located on multiple physical machines. Local processes can
be written using different tools based on existing software resources
of the distributed system such as compilers and program libraries.

• A user can have the freedom of control over the mapping of processes
to processors. With a high-level graphical notation, a user can specify
the processor assignments completely, partially, or leave it entirely up
to the environment..
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Based on a distributed graph tOOdel (Cao et al. 1995), PEDS can be used to
implement a wide range ofdistributed programs. Each distributed program
is modeled as a set of related diagrams. The components of II diagram are
implemented with existing so:tlwm'e resources of the distributed system.
The construction process is independent ofany specific distributed system,
and a constructed program can be mapped onto different configurations by
a flexible mappintJ facility.

Graph IlodeItng ofDIstrIbuted AppIIcBtlons

When designing distributed programs~ programmers commonly draw in­
formal directed graphs showing distributed structures (Zhang et al. 1999).
These graphs abstract llway the details of the nodes bein3 designed and
concentrate on their interactions. The advantage of this is that the pr0­

grammer can specify the distributed str1Wtnre without concern about the
internal workintJ ofeach node.

PEDS uses a graph abstraction method to represent distributed programs. It
divides a distributed program into severa1looal processes (LPs) and de­
fines their interactions. Each LP can be allocated on a processor in a dis­
tributed system. A LP is characterized by the fact that all work initiated in
it is, mostly, limited to its sphere of control; it essentially executes inde­
pendently of other LPs except fur specific points in its processing when it
needs to interact with other LPs.

The process of creating a distributed program is then divided into two
steps: drawing an overall graph and creating corresponding LPs. A graph­
based visual distributed programming language can help realize this proc­
ess (Chan et aI. 20(5). With the visual programmin3language, we separate
the specification of LPs from that of synchronization and communication,
and express synchronization and communication directly (but abstractly)
usintJ graphs.

A LP is defined as a graph node, which can have a set of input and output
ports. With these ports, a graph illustrates the interaction among LPs. As
LPs are located on distn'buted processors, the interactive behavior de­
scribes the message-passintJ mechanism that is performed between distrib­
uted processors. A processor can send messages directly only to a subset
of the processors with which it is directly connected. Its directly connected
processors are called its neighbors. For communication with non­
neighbors, a routin3 algorithm is needed. Routin3 is the term used to de­
scribe the decision procedure by which a processor selects one of its
neighbors to send a message to an ultimate destination.
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Programming Tools

In PEDS, various distributed. tools are used to support implementing the
mentioned ftmetionalities. They can cooperate with each other to oreate
sophisticated distributed programs. Such tools, which will be called work­
benches, include:

• High Level Process Flow Diagram workbench (HPFD workbench) is
a process flow diagram providing a high level control structure over a
set of processes, whose details can be specified in other workbenches.

• H..igh Level Petri Net workbench (HUN workbench) is a modeling
tool for specifying the high level behavior of a task using Petri net.
Each of its transitions can be connected to a workbench, with whi.ch
the transition specifi.cation can be provided.

• Java workbench provides a platform for editing and compiling Java
programs.

• Supporting workbench is llsed to specify a set of available software
resonrces and their relationships for mapping processes to processors.

• Net workbench is for specifying the configuration of processors and
their interconnecting network (e..g. a distributed system).

• Distributed workbench (Fig. 8.19) is the top level working environ­
ment that is used to configure all the other workbenches to form an
integrated distributed application.

Fig. 8.1,. Distributed workbench



8.5 A Case Study: Generating A lmtributed Programming Environment 195

A distributed program modeled with 11 set of HUN workbenches and
HPFD workbenches is linked to a supporting workbench for resource
mapping, which in tum links to 11 net workbench for :finding proper set of
processors. PEDS is, therefore, a hierarchical program:m.i:ng environment
supporting multiple program:m.i:ng paradigms.

8.5.2 Generation of PEDS Using ViaPro

This section focuses on how to construct the PEDS hierarebieal environ­
ment and implement interactions between different sub-visual languages
using the VisPro system.

Hierarchical Envlrommmt

An icon in the PEDS interface represents a window, caned a workbench,
which can be opened and operated upon and can include child icons. The
main window in PEDS is an icon window, caned managemem-win,
where various icons can be created and managed Apart from the mEm·
agement-win, there are other windows: HLPN workbench, lIPID work.­
bench, Java workbench, supporting workbench, net workbench and con·
figuration workbench.

In an icon window, each workbench represents a program (or a specific:a­
tion). For example, when one wants to create a Petri net, he/she can create
an HLPN-icon, (ie., an icon for HLPN window). By opening the HUN­
icon, one can create a Petri net The HLPN-icon. thus, uniquely represents
the created Petri nel

Fig. 8.20 shows the hierarchical programming environment of PEDS. It
has a main icon window in which some child icons have been created. A
child icon window and a HUN workbench are also shown in the figure.
They can be triggered from icons in the main window.

Generating such a hierarehieal programming environment is easy in the
VisPro system. First, one can create icon classes in the VO generator fOr
each ofthe workbenches. Then the control specifications for the icons can
be created, which include

ND-has-node management-win management-icon
ND-has-node management-win HPFD-icon
ND-has-node management-win HLPN-icon
ND-has-node management-win Java-icon
ND-has-node management-win supporting-icon
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ND-has..nocJe management-win net-Icon
ND-has-node management-win configure-Icon

Fig. 8.20. PEDS hierarchical programming environment

It indicates that seven classes of icons, namely, management:-icon,
HLPN-icon, HPFD-icon, Java-icon, supporting-icon, net-icon, and
conflgure--lcon, are created in a management-win to include the seven
icons. Eacb. of the cmId icons created in tb.e management-win may open
a corresponding window (i.e. workbench). This can be specified as:

ND-has-workbench management-Icon management-win
ND-has-workbench HLPN-Icon HLPN-wln
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It indicates that seven classes of icons, namely, management-icon,
HLPN-icon, HPFD-icon, Java-icon, supporting-icon, net-icon, and
conFtgure-icon, are created in It management-win to include the seven
icons. Bach of the child icons created in the management-win may open
a curresponding window (i.e. workbench). This can be specified as:

ND-has-workbench management-icon management-win
ND-has-workbench HLPN-icon HLPN-win

The fi:rst item specifies that one can open a management-win on a man­
agement-icon object. Similarly, the second item indicates that a HLPN­
win can be opened through an HLPN-icon, where HLPN-win is the work­
bench class for HLPN. In addition, commands should be added to each of
the icon classes, such as an open operation. For example:

open open-management management-win

specifies amenu item named open-management which can be triggered
to open amanagemant-win.

The VisPro framework is able to create a command system over each of
the icons according to the control specification. Icons and their commands
provide a mechanism for hierarchically specifYing distributed programs.
For a hierarchical programming environment, interactions between graph
nodes and workbenches should also be created

ConsttucIltm of lnIeIactions

A workbench wI may be used to specifY a sub-task: ofanother workbench
w by linking wI's own icon with a node of w. As an example, we use a
HLPN workbench to illustrate the interaction between different specifica­
tion levels. Fig. 8.21 shows the visual objects used in a HLPN workbench.
Normal objects in a Petri net are transitions and places. An annotation ob­
ject can specifY the annotation for a visual object by linking to the visual
object. To specifY the data transfer mechanism, we constmct two classes:
input part and output part. An input port can be used in a transition to
specifY the input information (i.e., name, type, etc.). When an input port
used independently, it represents an input :from outside and is called a
global input port. Similarly, we have output ports and global output ports.
Annotations can be given to an input port or an output port to specify its
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type and name. The reference object in a transition is used to link. to an­
other workbench fur specifying the transition details.

global input port.

global ou.tput port

place ----

transition ---

annotation ---

Fig. 8.21. Visual objects in lit HLPN workbench

inpu.t port
reference

ou.tput port

Fig. 8.22 shows two ELPN workbenches, where workbench (b) is used to
specify a transition in workbench (a). To transfer data oorrectly between
two workbenches, each port of the transition is annotated. In workbench
(b), two global input ports, annotated as Int count and Int work-Id, have
the same annotations as the input ports of the transition. Input ports with
the same annotations are taken as the same port. Thus, data accepted in the
port annotated as int count in workbench (a) is accepted in the port anno­
tated as Int count in workbench (b). How data is transferred in output ports
can be specified in a similar fashion.
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(a)

(b)

•••••••
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To implement the data transfer mechanism, we associate a transition with
lUI Attribute concept if the transition refers to another workbench sooh that
its ports are specified as attributes in the concept. For example, the input
port labeled Int count is specified as attrlbute("int count", parameter),
where parameter is data transferred to the port. In the sub-workbench, a
global input port will check the Attribute concept and access the parameter
it needs. In this way, data are transferred between different workbenches
properly.

After the user has specified the hierarchical progrmnming environment of
PEDS and the interactions between the workbenches, the VisPro frame­
work is customized to PEDS.

This section bas discussed how to generate PEDS using the VisPro system.
The management of the environment is described in the control specifica­
tion. On the other hand, interactions between different workbenches can be
specified in the lUnlotations and with the Attributes concept. PEDS, a hier­
archical programming environment with. multiple paradigms, thus, is cre­
ated by customizing the VisPro framework through specifications.

8.6 Summary

This chapter bas presented a generic visual language gen.eration environ­
ment with a hierarchical specification structure and multiple programming
paradigms. To ease the development of VPLs, we have proposed a VisPro
design model that divides any VPE into independent functional modules
and defines iii. protocol supporting the interaction between the modules. The
VisPro toolset with its ftanlework has been developed based on the above
design model, which can be used to generate diagrammatic VPLs. The
toolset consists of three specification tools, each of which facilitates one
aspect of the construction of VPLs in the VisPro framework. These tools
are visual languages themselves so that the target language properties and
the domain specifications can be visually described by direct manipulation.

The VPL construction process using the VisPro toolset is similar to the
textual language construction process using LexIYace. The process can be
described as customimtion, i.e. the VisPro framework can be customized
to any target visual language with a set of domain specifications provided
through the tools. The VisPro ftanlework and the specification tools to­
gether provide a complete support for the VPL generation. They can be
used to generate a wide range ofvisual progrmnming environments easily.
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8.7 Related Work

Researchers have developed some high level tools to ease the implements.
tion of visual languages and visual programming environments. These
tools can greatly reduce the effort ofdeveloping visual hm.guages~ although
they focus mainly on the oonstruction of user inte:rfOOe aspects of VPLs.
Example tools include SJL..ICON, VLCC, Escalante, Glide, SPARGBN,
DiaGen, PROGRES, and Fujaba, as described below.

Early tools such as SJL..ICON (Chang et a1. 1989) and VLCC (Costagliola
et al. 1995) use parameterizable framework:s to support VPL generation.
They are easy to use since generating target VPLs is simply done by CUi·

tomizing the predefined frameworks through domain specifications. SJL..
ICON (Chang et al. 1989) has a complete functionality for the construction
of icon·based visual languages. The SJL..ICON compiler is based on the
generalized icon theory and thus is limited to iconic VPLs. VLCC (Co·
smgtiola et al. 1995) assists the user with tools for defining a language's
syntax, semantics, and graphical objects. It produces an integrated envi·
romnent with an editor and a compiler for the defined language. VLCC
uses positional grammars as the underlying theory and pure images as sin·
gte-level visual objects.

SPAR.GEN (Golin and Magliery 1993) is a visual language compiler gen·
erator. Its generated parser supports additional action routines written in
C++, thus allows complicated actions to be specified in the fonn of rules.
SPAR.GEN does oot support the generation ofa visual programming envi·
ronmenl

Escalante supports the construction of applications for visual languages
that are based on object·relationsbip abstractions (MeWhirter and Nutt
1994). It provides mechanisms for iterative design, rapid prototyping and
generation of visual language applications within an integrated environ·
menl

Glide (Kleyn 1995) provides a BNF·like language for specifYing the logi.
cal structure and the user interface of a VPL. The user specifies a graph
data structure, associates graphical attributes to the data structure, and then
desribes a set ofpermissible changes to the data structure. Glide oonstmcts
a VPL based on the specified data structure. It can also reason about the
VPL through its logic programming rules. Since the Glide grammar is used
for creating the underlying data structure in the form of links between
n~ it is uosuited for specifying the syntax ofa VPL grammar.
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DiaGen (Minas and Viehstae:dt 1995; Minas 2002) is a tool for producing
diagram editors, which can be used to construct visual programs. DiaGen
uses hype:rgrapbs to model various typcs of diagrams, with a hyperedge
graph grammar that can be parsed efficiently. It recognizes syntactic oor~

rections of graphs during the editing process. DiaGen supports both fre~

hand and syntax~dire:cted editing modes, which provides a flexibility for
users.

PROGRES (Rekers and Schiirr 1996; SchOrr et aI. 95; Rekers and Schurr
1997) is a strongly typed multi.paradigm language with a well-defined
context~ftee syntax. type checking rules and semantics. The graph rewrit­
ing rules in PROORES provides a powerful formalism for graph transf()r~

mations and are particularly suitable for specifYing semantics of VPLs
whose underlying structures are node~edge graphs. PROORES can gener~

ate both programming environments and parsing algorithms. It does not
use any existing programming language (e.g. C, C++, or Java) to specifY
the actions of its rules directly. Instead, it uses a simple textuaIlanguage
which is apart of the system. PROGRES uses layered graph grammars to
specifY VPLs. The parsing algorithm of layered graph grmmnars requires
exponential time, as analyzed in Chapter 2.

The Attributed Graph Grammar system (AGG) (Ermel et al. 1999) is a
visual. programming environment based on a hybrid programming lan­
guage, i.e. the AGO language, that integrates graph transformation rules
with Java. An AGO program consists ofa set ofproduction rules attributed
by Java expressions so that the standard Java library can be used to com~

pute objects' attributes.

VLPEG (Ferrucci et al. 2001) can automatically generate a visual language
environment consisting of a graphical editor, and a lexical, syntactic and
semantic analyzer. It is based on the contexMree Symbol Relation Gram­
mar model (Ferrucci et al. 1996), that can specifY the relationships among
the symbols in a visual sentence at a higher level ofabstraction than that in
RGGs. Similar to VisPro, VLPEG supports incremental development of
visual programming languages through rapid prototyping.

Fujaba (2005) provides a UML~like CASE tool for round-trip engineering.
It supports code generation from. class diagrams, activity diagrams, state
diagrams, and collaboration diagrams, as well as reverse engineering from
Java code to UML diagrams (Maier and Z:ilndorf 20(3). Graph transforma­
tion in Fujaba is used to specifY the behavioral aspects of modeling~
tems through story diagrams (Fischer et aJ. 1998), a graph rewriting lan­
guage that combines several UML diagrams.
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9.1 Conclusions

The book has described visual programming languages and their applica­
tions in several important domains. We started with a general introduction
to the coneepts of visual la.ngua.ges and presented a theory behind such
languages. i.e. a context-sensitive graph grammarf~ known as the
reserved graph grammar (ROO). The ROO was based but improved on the
LOG (Rekers and SchOrr 1997). By keeping the layer decomposition
mechanism ofthe LOG to terminate parsing in finite steps, the ROO uses a
marking technique with an embedding rule to solve the embedding pr0b­
lem. The rule ensures: that the application ofa production in the graph re­
writing process would not create dangling edges. By ensuring selection­
:tree productions in the RGG. sometimes called confluent graph grammtmi
elsewhere, a se1ectiOlt-free parsing algorithm (SFPA) attempts only one
parsing path and thus achieves a polynomial time complexity. It is difficult
to estimate how many types of diagrams could be specified by selection­
:tree productions. Having applied RGGs to many different application d0­
mains, we have not come across a diagram formalism that cannot be speci­
fied by selection-free productions.

By extending the ROO with spatial specification capability and a more ef­
ficient parser. we obtained the spatial graph grammar (SOO) formalism.
The SOO fOIIllalism was motivated due to the graphical nature of visual
languages - the spatial infuIIllation not only contributes to the representa­
tion, but also intuitively conveys stroetuml and semantic constraints. For
example, an order over a set of objects can be directly specified according
to their spatial locations (e.g. the left object has a smaller index than the
right). In a SGG, both the connectivity and spatial relationships construe!
the pre-condition of a graph transformation.. This sets a solid foundation
for visual and spatial reasoning, with a great potential for practical applica­
tions such as geographical information systems.
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The subsequent four chapters have described the applications of visual
languages and graph grammars in multimedia authoring and presentation,
data interoperation, software engineering, and Web development.

The diversity of the multimedia devices and the advance of multimedia
technology demand multimedia presentations to be intelligently adaptive
to different viewing contexts. With a graph grammar based authoring ap.­
proach, a grammar functions as It mapping from It presentation ofa style to
a physical layout The syntactical defmition in the grammar captures the
structure of any multimedia document and the parser performs automatic
validation on the document. Rather than assigning every object with an ab.­
solute oo-ordinate value, spatial graph grammars specifY how the docu­
ment looks like by defining spatial relations in the grammar.. Automatic
presentation layout could also be performed through the parsing process.

To support data interoperation at different levels of abstraction, we have
proposed It framework with a uniform graphical representation of data in­
stances and models. Operations on data instances and models could also be
represented visually using a set of graph transformation rules. The ftame­
work graphically defines the syntax. and translation rules for data instances,
and high-level operators for schemas and models. The framework also
provides an intuitive interface for users to customize the operators. The
presented concepts represent It step forward to automatic data interopera­
tion through generic visual operators, reusable graphical interfaces, and
customjzable declarative rules.

A language with a simple and wen-understood syntax, possibly with a
graphical representation, benefits the communication of software designs
between different designers. Using graphs to interpret graphs, graph trans­
formation. which offers a promising formal approach to modeling architec­
tural evolutions and, dynamic behaviors of software systems. We have pre­
sented It grammatical approach to the specification and evolution of
software architectures. The validation of structural integrity through syn­
tactic checking is made possible by the underlying grammar. Moreover.
such an approach is open and interoperable with other formal approaches.
For example, by viewing evolution as transitions of system states, the
model checking technique applied in the large and realistic systems (Baresi
et al. 2003) can be incorporated.

Web engineering and development, including design. search. navigation,
and maintenance, has been a central focus of the Internet technology.
Graphical support for Web engineering that hides the coding of mark-up
languages would expose and ease the activities of Web development to
the general public. We advocate a uniform graphical view throughout the
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design, navigation, :reuse, and maintenance cyele ofWeb site development.
The structured design supported and validated by the Web graph gramnt8I

would benefit the search and navigation, and thus promote the semantic
Web. It also enhances the reusability and maintainability of many legacy
Web systems.

Fundamental to the power and applicability of visual languages in many
application domains is the generative technology. The major advantages of
the grammatical approach with the generative technology can be su;mma..
rized as the following:

• The meta-tool capability allows any domain-specific visual languages
(DSVLs) to be automatically generated 3COOIding to the specification
of the domain characteristics. A DSVL can thus be readily created.
modified and enhanced whenever the domain needs arise. Thus an it­
erative and incremental process is supported.

• Any non-disposable software prototype conforming to the specifica­
tions can be visually constructed through direct manipulation by a do­
main programmer who needs not to know the detailed speei:fication.
Once the prototype is confirmed to meet the domain requirements, the
full scale prototype program can be generated.

• Verification is naturally supported. The generated DSVL environment
includes a syntax-directed visual editor that is capable of syntactic
checking and function verification of any prototype oonstructed in the
DSVL.

9.2 Future Perspective

Visnal prognunming languages have been investigated fur nearly 25 years
as overviewed in Chapter 1. Visual llil.UgUage theories and their applica­
tions have been significantly a.dvanced over the 25 years. As discussed in
Chapter I, the general concept of visual languages has been used long be­
fore the invention of the visual languages for computer programming,
visual programming languages (VPLs). The trend is to move back. to the
more general sense of visual languages for various types of applications,
rather than merely for the programming purpose. Visual modeling has en­
tered the main stream of software engineering, largely due to the mecess
ofUML.

Considering the future of diagrammatical visual programming languages,
three major hurdles need to be overcome as summarized below.
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• The inefficient eompilation due to high dimensional search and
m.atch of sub-grapbs. More effective graph grammars with efficient
parsers need to be developed, which may be the most challenging is­
sue for all VPL researchers. The expressiveness of a graph grammar
appears to always work against the efficiency of the parser. Spatial
specification assisting narrowing down the search space represents an
interesting attempt to gain both efficiency and expressiveness.

• The lack of effective yet intuitive programming metaphors sup­
ported by efficient user interactions. Research in human factors in
visual programming has been at its early stage. Commonly accepted
visual metaphors may be used as visual language primitives to sup­
port user-friendly interactions. Empirical studies on the effectiveness
and usability of such visual metaphors need to be conducted. This is
largely an interdisciplinary research involving not only computer sci­
ence, but also semiotics. cognition science, and ergonomics.

• Less sealable than textual programming due to the more use of
the screen estate. To meet the new challenges m.ulti-dimensional
visual programming. particularly in distributed and collaborative
computing environments, we need investigate visual progranuning in
the large (Chang et al. 1999). This is also related to the effective use
of visual metaphors. The capability of hierarchical yet graphical
specifications through grammar rules is indispensable in a scalable
visual programming environment One solution is to introduce hierar­
chical views (Pietriga et al. 2001). Another is to apply the grammar
replooement process to support graph expansion and shrinking, which
would however limit to context-free graph grammars.

Research in VPLs will continue in these directions, together with other is­
sues such as testing, tracing. and comprehen.<;ion. Also, more work needs
to be done to enrich the grammar formalism and enhance the event­
handling capability. We describe some specific future projects that are
worth pursuing.

Designing dynamic user interfaces to support interactive communication
for new applications, especially mobile devices, is a research and design
problem. In dynamic capture, access, and authoring of Web and multime­
dia presentations, the attributes of some media elements may be defined in
terms of those of other media elements, or in relation to the attributes of
the viewing environment Attributed grammars that are capable of adapt­
ing to multiple simultaneous changes offer a promising solution.
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We may consider a visual language for multimedia authoring and presenta­
tion as a multidimensional language that has objects of different media
types as its primitives and spatial and temporal operators as its operators
(Chang 2000). A future direction of investigation is to add the time dimen·
sion to the design ofmultimedia presentations. Temporal specifications~
teonine the sequence ofpresentation. Allen presented some common tem·
poral relations such as during, before, meet relations (Allen 1983). which
are potentially adaptable to the~ as conditional attributes. Exten·
sive :research has been devoted to the temporal aspects of multimedia au·
thoring and presentations. We plan to investigate the oombined use of
temporal and spatial specifications and explore the fun power of the
grammatical approach.

Writing production rules and their ootion codes for any graph grammar is
not an easy task. even for a design expert with computer science t:raining.
since it requires a good oommand of the grammar formalism. It has been
the author's goal to partially automate the production authoring tool to ere·
ate part ofthe rules upon layout requirements. Using an induction engine is
one solution that ean simplify the grammar eonstruction process. Often.
samples of a visual language are processed to automatically constrllCt a
graph grammar, at least in part (Ates et al 2006). The induced graph
grammars can be further modified by the user,

Most grammar induction methods are based on inductive logic program.
ming (ILP) which represents data in first-order logic, An induction process
is performed on the logic to produce a learned set. or generalization, of
rules on the data. Inducing context-free graph grammars using ILP is a
promising approach, ILP-based induction systems, such as SubdueGL
(Jonyer 2003) and its successor (K:uIduk et at 2006), have produced some
encouraging results. Automatic induction ofcontext-sensitive graph gram.
mars such as llOOs is a challenging research direction.

The ability of inducing RGGs will not only ease the grammar writing ef·
forts in various applications such as those discussed in this book:, but also
empower more advanced applications. For example, in model--drlven
architectures, we can define the behavioral semantics of state diagrams
grammatically. Instead of manually designing a graph~ to formal­
ize the state hierarchy, we will be able to automatically derive the
graph grammar from a state machine. In order to interpret state transitions
of simple and composite states, graph grammars automatically induced
from state machines could be used to validate. recognize and generate 00·

tive state configurations. Such a~ induction mechanism and its
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validation and rerognition capability would facilitate the automated design
ofmodel·driven architectures.

Apart from software engineering) visual languages and their underlying
grammar fonnalisms will continue to be applied to more application do­
mains, including the deployment of senor networks, scientific modeling
and simulati~ round.trip engineering, data interoperation, resource man·
agemen~ digital design, and pattern recognition.
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Appendix RGG+: An Generalization to the RGG

A.1 Introduction

Like textual programming languages that are usually equipped with proper
formal syntax definitions and parsers, graphical or visual languages need
the support ofsuch mechanisms. Formal definitions ofgraph grammars of­
fer the following advantages (Rekers and Schtin' 1995):

• Without a proper syntax definition. new users can only guess the syn­
tax of a graphical language by generalizing from the provided exam­
ples.

• A deftnition oould serve as an ummlbigoous specification for syntax­
directed editors over the language,

• A graphical parser could be generated out ofa proper definition. aDd

• A syntax defiuition is a necessary precondition for a definition of the
semantics ofthe language.

Among a large variety of visual languages only a few are equipped with
proper formal syntax definitions. This is mostly due to the fact: that the ex­
tension from one-dimensional textual languages to two-dimensional
graphical languages raises new issues. The existing graph grammar for­
malisms. though proven to be useful in many practical applications, need
to be improved in many aspects, such as their expressive power and easi­
ness to be developed and implemented

As reviewed in Chapter a number of grammar formalisms and their
parsing algorithms have been proposed, most of which are used to define
context-free grammars with limited expressive power. The best known
context-sensitive graph gmmmar formalism is the layered graph grammar
(Rekers and SOOtin' 1997), which is relatively expressive but requires ex­
ponential parsing time. The ROG improves the LOG in its expressiveness
as well as the parsing efficiency. With a spatial extension to the ROO, the
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spatial graph gra.tnJllar (SOO) discussed in Chapter 3 improves the parsing
efficiency fbrther due to the additional spatial constraints. Although both
RGGs and SGGs had successfully solved many graph related problems in
applications described in Chapters 4 through 7, the confluence condition
restricts their applications.

This appendix discusses an attempt to generalize the ROO fonnalism in
two directions: ease the development of graph grammars, and enhance the
expressiveness of the gmmmar fonnalism by removing the confluence re.­
striction in the ROO. As expected, the parsing efficiency will have to be
sacrificed We will call this genemlized version RGG+.

Tbe contribution of the ROG+ is twofold. One is to replace the multiple
layers of labels with the usual two layers, i.e., tenninal and non-terminal
labels, and introduce a size-increasing condition to graph grammar produc­
tions to solve the membership problem. The size-increasing condition only
imposes some weak restrictions on the structure of productions, and is
more intuitive and easier to handle than that of the layer decomposition
mechanism. The other is to give a more general parsing algorithm tbat has
no requirement that graph grammars must be confluent. This greatly en­
hances the parsing capability.

The rest of this appendix is organized as follows. Section 2 defines the no­
tations used in the subsequent sections. Section 3 fonnally defmes the
ROO+ and its languages, and proves the decidability of ROG+s. A parsing
algorithm for ROG+s is described in Sectiou 4 along with an analysis of its
time and space complexities. Possible approaches to improving the effi­
ciency ofthe parsing algorithm are discussed in Section 5. Finally, Section
6 summar:izes this appendix.

A.2 Notations

The basic ooncepts and notations in this appendix are consistent with the
RGO definition in Chapter 2, and are summarized below for expression
clarity and simplicity.

(I) : An empty set.

o : A fmite set of labels, consisting of two disjoint subsets, ter­
minal label set 0 1' and non-terminal label set aNT, i.e.,
O=OT uONT and aT nONT =(1).



II: Cardinality ofa set

N : A node set consisting of a terminal node set NT and a non-
terminal node set NNT , N "" NT uNNT with
NT nNNT =(1).

f : A labeling fUnction establishing a mapping N ~n .

p := (L,R): A production consisting of a left L and a right R graphs
over the same label set n .

R(H,a}: A set ofredexes of graph G, which are sub-gmphs of graph
H.

T(H,G,o,ii) :Transforming graph H by replacing its sub--graph

if e R(H, G) with G' to yield a new graph.

H H R H': R-application or reduction of a prodnetion p:= (L,R) to

graph H ,namely H'=T(H,L,R.H).

H ~L H': L-application or derivation of a production p :."" (L, R) to

graph H ,namely H'=T(H.R,L,H).

H • H A . f R lian+: H Jt:l H H in HH If: senes 0 -app wu.tons: H I. I H 2' .•.•

HIf-I H Rn Hn including the case 1'1::::: 0 when H =H" and
HHH.

H ~* H n : A series of L-applications: H ~LI HI. HI H2> ...•

HII-I ~Ln H n including the ease 1'1::::: 0 when H = Hit and
H~H.

A.3 The Generalization

The RGG+ inherits from the RGG the most; basic concepts, such as graph
element, graph, marking, isomorphism, redex, and graph transformations
includi.ng L-application and R-application. In the RGG+'s grammar defini­
tion. a size-increasing condition is proposed to replace the layer decompo­
sition mechanism used in the RGG. The condition maims RGG+'s easier to



230 Appendix RGO+: An Generalization to the ROG

design while ensuring the membership problem of RGG+'s to be decid­
able.

A.3.1 Definition of a RGG+ and its language

It is well known that graph gram:mars with arbitrary graphs on the left and
right sides of productions are able to generate type 0 languages, and the
membership problem for type 0 languages is in general undecidable
(Revesz 1983). Similar to LOGs, the requirement that the left graph of
every production must be lexicographical smaller than its right graph en­
sures the decidability ofRGGs. In order to relieve grammar designers from
assigning labels to layers and ensuring a lexicographically smaller left
graph than the right graph in each production, we introduce a size­
increasing condition. into the grammar defmition, similar to the length­
increasing condition in textual grammars. This is a weak constraint on the
size between the right graph and the left graph ofa production. Impacting
little on the flexibility ofcontext-sensitive grammars, the constraint is easy
and intuitive to treat by grammar designers.

Definition A.1 gg:=(A,P,O) Is a graph grammar called RGG+, where A

Is an Initial graph, P a set of graph grammar productions, 0 is a finite la­
bel set and can be further divided into two disjoint subsets, 01' and am,
for terminals and non-terminals respectively. For each produc­
tion, p "'" (L,R) E P, the following conditions must be satisfied:

• R Is nonempty,

• L and R are over the same label set a ,and

• the size of R must be no less than that of L , i.e., Ip.L.N I~ p.R.N I;
If they are equal, the number of non-terminal nodes in R must be
more than that In L, i.e., Ip.L.N 1=1 p.R.N HI pL.N' 1<1 p.R.N1' I•

The last condition ensures size-increasing, guaranteeing that a graph can
be parsed in :finite steps with the grammar and a definite an.swer as to
whether or not the graph is in the grammar's language will be found. The
language ofthe gram:mar is defined as follows.

Definition A.2 Let gg:= (/l,P.Q) be a RGG+.lts language r(gg) is a set

of graphs that can be derived from the initial graph A and each graph
node has one terminal label, i.e.,

r(gg) "'" {G IA~" G Af(G.N) ~QT}.



AA Graph Parsing 231

A.3.2 DeckJabllity

When a RGG+ is given, its language is determined. Whether an arbitrarily
given graph is in the lll1ljU8ge or not is decidable beeause of the following
theorem.

Theorem A.1 For every RGG+ gg:;:: (A.P.Q.) and for an arbitrary non­

empty graph H (H.N 'j:: (£t), It Is decidable whether or not H Is in
r(gg).

Proof: For a given graph H with a finite number of terminal nodes,

namely H.N =H.NT being a finite set, the total number of graphs fi

with I(H.N) S; Q. and I fi.N ~ H.N I must be finite uuder finite g. Con­
sidering a sequence ofgraphs

A =HoJi1.ii" •...• iin-uHn =H

~ NT ~ ~ •
such that Hi.N :;e c:D and IHi ~I Hi+1 I fur l;; 0.1•...• n -1 and

fii :I; fiJ if i ¢ j • the number of such sequences without repetition is also

finite. Thus we can enumerate all such sequences and check whether
fii -+* fi1+1 (i:::; OJ.....n -1) holds for at least one of them. If so. then
clearly H e r(gg). otherwise, H '/iT(gg) • 0

In the proof. only inequality 1p.L.N l:s;j p.R.N I is employed, implying that
the inequality itself can guarantee the deeidability of the RGG+. However,
introducing an implication Ip.L.N 19 p.R.N 1-+1 p.L.N'1' 1<1 p.R.NT 1 can
help to speedup parsing. The implication and the inequality together decide
that each R-applieation will at least either reduce a node or change a ter­
minal node to a non-terminal node in the reduced intermediate graph.
Therefore, R-applieations can only be applied finite times to any host
graph ofa given size.

A.4 Graph Parsing

Having proven the membership problem for the languages defined by
ROO+s to be decidable in the last section, this section presents a parsing
algorithm for the languages ofRGG+s.
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The SFPA. the parsing algorithm of the ROG, is very effieient in parsing
ooy graph in polynomial time under the assumption that ifone parsing path
fails, any other parsing paths will also faiL So, the SFPA is only suitable
for those grmmnars called selection-free grammars. In order to support the
speeifieation of those context-sensitive grammars that are oot selection­
free, we need to develop a more general parsing algorithm that attempts to
search all possible parsing paths instead ofjust one as in the SFPA. Such a
parsing algorithm is 00 doubt more powerful but its performlUlce may be
seriously penalized because of the extremely large search space.

Generally, parsing is a process that applies a given graph grammar to per­
form a series of R-applications to reduce a given host graph to the initial
graph. It usually needs to incorporate the following three interrelated ac­
tions:

L Search in the host graph for the redexes ofa production's right graph;

2. Accomplish an R-application wi.th a found redex to produce a new in­
termediate graph from the host graph or from the current intermediate
graph; and

3. Trace all the reduction paths by applying in tum the above two ac­
tions until a path leading to the initial graph is found or all possible
paths have been exhausted.

.In the following, we will discuss fIrst how to trace all the reduction. paths,
ood then about the search for an redexes ofa production's right graph,

A.4.1 A Parsing Algorithm

A straightforward approach to parsing is to enumerate all the sequences
and then check them one by one to see whether each derivation bolds for at
least one of the sequences, as shown in the proof of Theorem A,l. Unfor­
tunately, this approach may have to handle many derivation,.irrelevant se­
quences and thus is inefficient. In order to avoid irrelevant sequences. we
try to trace all possible reduction paths starting from a given host graph to
see iftbere exists one path that leads to the initial graph.

The following function realizes the tracing task, assuming that search for a
redex and a-application has already been implemented (as in the SFPA).
In tbe function two stacks are employed to separately store the redexes
found and the intermediate host graph yielded. The tracing needs to main­
tain a correspondence between a redex. and its host graph in order to per­
form the corresponding reduction. Since such a correspondence is usually
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II push

II pop

1/ push

}
redex .f- redexStack;

Loop-4: while (redex == DELIMITER)
{

many to one, the function uses a delimiter in the redex stack to delimit a
group of redexes that correspond to the same host graph. The delimiter
:makes the correspondence manageable by synchronizing the contents in
the two stacks. The fimction takes a graph and a set ofproductions as input
and returns a definite answer indicating whether the graph is valid or not.

Parsing (Graph H , ProductionSet P )
{
loop-1: while (H ¢ A )

{
DELIMITER ...... redexStack;

Loop-2: for all peP
{

redexSet == FlndRedexForRlght( H , p.R);

Loop-3: for all redex e redexSet;
redex ...... redexStacIr,

H .f- hostStaclr, 1/ pop
redex .f- redexStaclr, 1/ pop
If (redex == NULL)

retum("lnvalld");
}
hostStack.f- H; II push
H == R1ghtAppllcatlon( H , p, redex);

}
retum("valld");

}

A4.2 Search for Redexes

The SFPA has partially solved the search problem. in which a function is
oonstructed to search for only one redex once. Fortunately. it is easy to ex­
tend the function from searchi:ng for one redex to searching for all redexes.
The extended function is given as follows, which takes til host graph and til

right graph as input. and returns a set ofredexes found.

FlndRadexForRight(Graph H , Graph R);
{

redexS6t == (Jl;;
nodeSequoooo == orderNodesequenoo( R );
oondldateset=flndNodeSequenooSst(H , nodeSequence);
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for all canclldate E canclldateSet
redexSet =redexSet+match(canclldate, H , R);

retum(redexSet};

The function orderNodeSequence( R ) sequences the nodes in the right
graph according to their labels' alphabetic order. The function findNode­
SequenceSet(H, nodeSequence) finds all possible node sequences
from the host graph,. each of which is isomorphic to the nodeSequence.
Finally, the function match{candidate, H, R) checks whether a candi­
date in the bost graph is a redex. of the right graph, if so, the candidate is
returned as a redex., otherwise, a null is retum.ed.

A.5 Parsing Complexities

Complexity analysi.s of an algorithm is helpful in evaluating the algo­
rithm's performance. In this section we analyze the time complexity and
the space compleKity ofthe above parsing algorithm.

A.5.1. nme Complexity

Theorem 5.1 The time compleXity of the parsing algorithm is

O«.!it(hhhl)') , where It is the number of nodes in the host graph to be
1'!

parsed, r is the maximal number of nodes in the right graphs of all pro­
ductions, and n is the number of productions in the given RGG+.

Proof~ According to the structure of the parsing algorithm, its maximal
time compleKity can be ex.pressed as:

t-0(11(12(tl +/3 )+14 +t2»,
where It is the max.imal number ofiterations in the outmost loop-1, I'}; is
the number of iterations in the first inner loop-2, 13 is the number of itera­
tions in the innermost loop-S, 14 is the number of iterations in the second

inner loop-4, and II and I'}; are the time complexities ofFlndRed&xForRight()
and Rigl1tApplicatlon() respectively.
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We first consider la, which is in fact the number of productions, i.e"
I'}. =n =1 PI, Since 12 ,13 is the total number of actions inp~ redexes

into the redex stack and 14 is the partial number of actions in popping re­
dexes from the redex stack. 14 should be no more than 12 ·1). and thus can

be ignored SinceI] is the number of redexes found in the host graph with
respect to the right graph of a given production, the maximal nomber of
redexes is all possible node combinations Ck, thns I) ::;;; Ch =O(hr

) , When
considering 11' the worst case is when the algorithm's result is 'invalid',
and all redexes found dnring parsing will enter the stack. Each of the re­
dexes, when popped out of the stack. leads to an iteration of the outmost
loop, Therefore, II equals to the number ofthe redexes found,

An iteration of the outmost loop produces no more than nCk redexes for
n productions and perfot1llS ooe R-application. According to the size..
increasing condition, each R-application would reduce the size of the de­
rived host graph. Since there are at most If R-appfications that may not re­
duce the host graph size and an R-application will reduce the host graph
size by at least 1, the following derivations hold for II:

11 ::;;; (nChJ'l nCh_1nCh_2 ,,,.nCh_(1I-r_l)nCh-(H) (l)

2h-r (Cl' )11 Cl' Cl' Cl' Cl'=n II 11-1 11-2 ,," l'+l I'

2h-r Ii )11 (n -1)1 {r+I)l_r!
=n (---

(h - r)Irt (h -1-1')11'1"" IlrI OIrt

Ll H-l( )1
=1'1211-1'( m )h TI u+r,

(h - r)lr! 11",1 rlu!

2k-1' h-r-l

= ~ 211-l'-1 (h(h-l), ..(h-r+l))11 TI(u+r)(u+r-l),,,(u+2)(u+l)
~) ~
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As for It and t2 , since the maximal possible nmnber of selections of r

nodes:from. h nodes is A~ =h(h-l)...(h -r+ 1), the worst cases of search­
ing for all redexes of a right graph in a given host graph must be
tt "" O(h r

). Since 12 is independent of h, it can be considered t2 "" 0(1)

that is bounded by a constant time.

Combining all the above discussions, we can fmally obtain:

t =O«~)'~(hhh!)r).
r.

A.5.2 Space Complexity

o

Theorem A.2 The space complexity of the parsing algorithm is
O(hr+l) , where h is the number of nodes in the host graph to be
parsed, r is the maximal possible number of nodes in all the right
graphs of productions.

Proof: Obviously the m.ain space-consuming components are the redex
stack and the host graph stack used in the parsing algorithm.. We can there­
fore express the m.axim.al space complexity as:

S = Sf +S2,

where St is the space used by the redex stack and S2 is that by the host
graph stack. Without losing generality, we can assume that the space taken
by a redex is r and that by a host graph is h. Different from time com­
plexity, the use ofthe stack space is not always increasing because pop op­
erations would release space for reuse. Hence, the worst case is the maxi­
mal occupied space along the longest reduction path, and the following
derivations hold for the redex stack and the host graph stack respectively.

81 $ r(hnCh +nCh_I +.... +nCh_(h_r) (2)
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_ ,,,,j hh! (h -1)1 r! )
-1'..\ + + .... +

(h - r)!r! (h -1- r)!r! orr!

l.U It-r-l t )1
=_7I_(_m_lI.+ '" \~Hr .)

1)1 (11-1')1 ~ ul

n h-r-J
==--(M(h-l)...(h -. r +1) + L (u +1')(u + l' -l}...(u +1»
~-QI u~

h-r-J

=O(hr+1 + Lu r
)

~

:=O(hr+1);

82 == hh+(h-l)+ ...+r

:=O<h2
).

Since r ;;=: 1. we can obtain:

8 == O(hr +1
).

From the above analysis, we observe that the time complexity is extremely
high while the space complexity is bounded by a polynomial mctor. We
also observe that the stmetu.re ofproduetions plays an important role in de­
termining the algorithm's complexity. For example. ifa stronger constraint
such as 1p.L.N 1<1 p.R.N I is enforced on productions. then the fnst h R­
applications that do not reduce the host graph size ean be removed ftom
(I). In addition, the algorithm itselfmay be further improved to increase its
efficiency, especially its average time eost.

A.5.3 Optimization Considerations

Although the worst time complexity ofthe algorithm is extremely high. the
parsing algorithm provides a starting point for further improvennmt. In
practice. the worst case rarely ooeurs during parsing. When applying the
ROO+. we could concentrate on the reduction of the average time cost of
parsing under appropriate assumptions applicable to the most common ap­
plications. The high parsing costs are due to the search for redexes and
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handling of backtracking. which should be the primary targets for per­
formance improvement

A straightforward approach to reducing the redex searching time is to nar­
row down the search space within the host graph. In most applications. the
size ofa host graph is usually much larger than that ofright graphs in pro­
ductions. So. when searching for redex.es in a given host graph, we only
need to search fur redexes among those host graph nodes whose labels ap­
pear in the right graph under consideration rather than searching for all the
nodes in the host graph. This can be done by first removing the irrelevant
nodes from the host graph. and then searching for redexes in the remaining
nodes. Having obtained the node sequences of the host graph and right
graph, irrelevant nodes can be removed from the host graph in linear time.
i.e. rh. Let h' be the number of the remaining nodes, the time for search­

ing for a redex can be expressed as rh +Ch' instead of C; . In the applica­

tions where the host graph is significantly larger than right graphs, the la­
bels appearing in a right graph merely make a small portion of all the

labels appearing in the host graph, that is. h» r and h' ~ r . The com­

plexity of searching for a redex in such a case can be redcued from O(h')

to 0(11). The assumption that the host graph is significantly larger than

right graphs is realistic in many applications.

Another optimization approach is to perform as early as possible the R­
applications that reduce the size of thc host graph, so that the subsequent
search space would be reduced significantly. This can be done by ordering
the productions according to their values of Ip.R.N I-I pL,N I. Based on

the order. the production with a larger right graph would be applied later,
which inversely, due to stack operations, gives its corresponding redexes
higher priority for R-applications .. Of course, if some productions witl1 the
large right graphs are not the ones needed for graph reduction, the above
approach improves little in performance. However, the ordering ofprodue­
!ions can be preprocessed Witl10ut adding extra cost to the parsing algo­
rithm. Therefore, on average. the approach may be able to reduce the pars­
ing time.

As mentioned before, another major cost in the parsing algorithm is in its
baektraeking, which attempts all the productions and their redexes. An
ideal approach to optimizing backtracking is to avoid as many unnecessary
productions and redexes as possible in each step of reduction, i.e. to push
less redexes into the stack during parsing. To perform such an optimiza­
tion, more information is required to limit the scope ofproductions as well
as their redexes. Because graphs are inherently 2-dimensional and spatial,
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one genemlsolu.tion is to use the spatial information. such as direction. to­
pology. alignment. etc.• to introduce extra constraints into the search space.
The Spatial Graph Grammar formalism (SOO) presented in Chapter 3 em­
ploys the spatial information specified in the grammar to improve its pars­
ing performance. In the SOG. a mechanism for specifying spatial informa­
tion is introduced into productions so that the nodes in right graphs may be
specified to have some types of spatial relationships. Since a given host
graph can be preprocessed to establish relevant spatial relationship among
its nodes aooording to their positions in the graph. the matching of spatial
information between the host graph and the right graphs makes a useful
constraint in restricting the selection scope for productions and redexes.

Some existing approaches may be adapted and extended to improve the
parsing performance. For example. the delta-based approach used in
PROORES (SchUrr 1991). incremental pattern matching based on RETE
networks (Lee and Schor 1992). and conflict detection with critical pair
analysis (Bottom et al. 2000). Furthermore. additional information. espe­
cially domain knowledge in specific applications. may also he helpful in
reducing aimless selection ofproductions and redexes during parsing.

A.6Summary

This appendix has presented the RGG+ formalism. more general version
the RGG formalism. Compared with the original ROO. two general exten­
sions are made in the ROG+. One is to replace the layer decomposition
mechanism by the size..increasing condition to ensure the decidability of
ROG+s. The other is a general parsing algorithm that works on any ROG+
regardless whether it is selection-free or not. These generalizations make
the grammar easier to develop and the parsing algorithm more widely ap­
plicable than the original ROO. As noted above. the penalty for these gen­
eralizations is the more complex and time-consuming parsing. especially
in the worst cases. i,e. the upper bound of the parsing complexity. Hence.
improving the parsing efficieucy is uecessary.
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